Modelling and Analysis of Fine Sediment Transport in Wave-Current Bottom Boundary Layer Modelling and Analysis of Fine Sediment Transport in Wave-Current Bottom Boundary Layer
IHE Delft PhD Thesis Series

Modelling and Analysis of Fine Sediment Transport in Wave-Current Bottom Boundary Layer

    • 999,00 kr
    • 999,00 kr

Utgivarens beskrivning

The evolution and utilization of estuarine and coastal regions are greatly restricted by sediment problems. This thesis aims to better understand fine sediment transport under combined action of waves and currents, especially in the wave-current bottom boundary layer (BBL). Field observations, experimental data analysis, theoretical analysis and numerical models are employed. Silt-dominated sediments are sensitive to flow dynamics and the suspended sediment concentration (SSC) increase rapidly under strong flow dynamics. This research unveils several fundamental aspects of silty sediment, i.e., the criterion of the incipient motion, the SSC profiles and their phase-averaged parameterization in wave-dominated conditions. An expression for sediment incipient motion is proposed for silt-sand sediment under combined wave and current conditions. A process based intra-wave 1DV model for flow-sediment dynamics near the bed is developed in combined wave-current conditions. The high concentration layer (HCL) was simulated and sensitivity analysis was carried out by the 1DV model on factors that impact the SSC in the HCL. Finally, based on the 1DV model, the formulations of the mean SSC profile of silt-sand sediments in wave conditions were proposed. The developed approaches are expected to be applied in engineering practice and further simulation.

GENRE
Vetenskap och natur
UTGIVEN
2018
19 juni
SPRÅK
EN
Engelska
LÄNGD
204
Sidor
UTGIVARE
CRC Press
STORLEK
11,6
MB

Andra böcker i serien

Multiple Objective Treatment Aspects of Bank Filtration Multiple Objective Treatment Aspects of Bank Filtration
2023
Grasping the Water, Energy, and Food Security Nexus in the Local Context Grasping the Water, Energy, and Food Security Nexus in the Local Context
2021
Adaptive Disaster Risk Assessment Adaptive Disaster Risk Assessment
2021
Establishing the Environmental Flow Regime for the Middle Zambezi River Establishing the Environmental Flow Regime for the Middle Zambezi River
2021
Simultaneous Sulfate Reduction and Metal Precipitation in an Inverse Fluidized Bed Reactor Simultaneous Sulfate Reduction and Metal Precipitation in an Inverse Fluidized Bed Reactor
2022
Bioreduction of Selenite and Tellurite by Phanerochaete Chrysosporium Bioreduction of Selenite and Tellurite by Phanerochaete Chrysosporium
2021