Radiation Technology for Advanced Materials: Radiation Technology for Advanced Materials:

Radiation Technology for Advanced Materials‪:‬

From Basic to Modern Applications

Guozhong Wu and Others
    • 159,99 €
    • 159,99 €

Publisher Description

Radiation Technology for Advanced Materials presents a range of radiation technology applications for advanced materials. The book aims to bridge the gap between researchers and industry, describing current uses and future prospects. It describes the mature radiation processing technology used in preparing heat shrinkable materials and in wire and cable materials, giving commercial cases. In addition, the book illustrates future applications, including high-performance fibers, special self-lubricating materials, special ultra-fine powder materials, civil fibers, natural polymeric materials, battery separator membranes, special filtration materials and metallic nanomaterials.

Chapters cover radiation technology in high-performance fiber and functional textiles, radiation crosslinking and typical applications, radiation crosslinking for polymer foaming material, radiation degradation and application, radiation emulsion polymerization, radiation effects of ionic liquids, radiation technology in advanced new materials, and future prospects. Presents a range of radiation technology applications and their application to advanced materials Covers the mature radiation processing technology used to prepare heat shrinkable materials and wire cable materials, describing real-world commercial applications Shows the promising application of radiation technology in preparing high-performance Si and carbon fibers Describes the radiation degradation/radiation effect used to prepare fine powder materials Discusses radiation modification and radiation grafting techniques used to synthesize materials, such as civil fibers, natural polymeric materials and others

GENRE
Professional & Technical
RELEASED
2018
26 November
LANGUAGE
EN
English
LENGTH
340
Pages
PUBLISHER
Elsevier Science
SIZE
23.5
MB