Accelerate Deep Learning Workloads with Amazon SageMaker Accelerate Deep Learning Workloads with Amazon SageMaker

Accelerate Deep Learning Workloads with Amazon SageMaker

Train, deploy, and scale deep learning models effectively using Amazon SageMaker

    • ‏35٫99 US$
    • ‏35٫99 US$

وصف الناشر

Plan and design model serving infrastructure to run and troubleshoot distributed deep learning training jobs for improved model performance.

Key Features
Explore key Amazon SageMaker capabilities in the context of deep learningTrain and deploy deep learning models using SageMaker managed capabilities and optimize your deep learning workloadsCover in detail the theoretical and practical aspects of training and hosting your deep learning models on Amazon SageMaker
Book Description

Over the past 10 years, deep learning has grown from being an academic research field to seeing wide-scale adoption across multiple industries. Deep learning models demonstrate excellent results on a wide range of practical tasks, underpinning emerging fields such as virtual assistants, autonomous driving, and robotics. In this book, you will learn about the practical aspects of designing, building, and optimizing deep learning workloads on Amazon SageMaker. The book also provides end-to-end implementation examples for popular deep-learning tasks, such as computer vision and natural language processing. You will begin by exploring key Amazon SageMaker capabilities in the context of deep learning. Then, you will explore in detail the theoretical and practical aspects of training and hosting your deep learning models on Amazon SageMaker. You will learn how to train and serve deep learning models using popular open-source frameworks and understand the hardware and software options available for you on Amazon SageMaker. The book also covers various optimizations technique to improve the performance and cost characteristics of your deep learning workloads.

By the end of this book, you will be fluent in the software and hardware aspects of running deep learning workloads using Amazon SageMaker.

What you will learn
Cover key capabilities of Amazon SageMaker relevant to deep learning workloadsOrganize SageMaker development environmentPrepare and manage datasets for deep learning trainingDesign, debug, and implement the efficient training of deep learning modelsDeploy, monitor, and optimize the serving of DL models
Who this book is for

This book is relevant for ML engineers who work on deep learning model development and training, and for Solutions Architects who design and optimize end-to-end deep learning workloads. It assumes familiarity with the Python ecosystem, principles of Machine Learning and Deep Learning, and basic knowledge of the AWS cloud.

النوع
كمبيوتر وإنترنت
تاريخ النشر
٢٠٢٢
٢٨ أكتوبر
اللغة
EN
الإنجليزية
عدد الصفحات
٢٧٨
الناشر
Packt Publishing
البائع
Ingram DV LLC
الحجم
٨٫٥
‫م.ب.‬
Amazon SageMaker Best Practices Amazon SageMaker Best Practices
٢٠٢١
Applied Machine Learning and High-Performance Computing on AWS Applied Machine Learning and High-Performance Computing on AWS
٢٠٢٢
Mastering Azure Machine Learning Mastering Azure Machine Learning
٢٠٢٢
Hands-On Machine Learning with Azure Hands-On Machine Learning with Azure
٢٠١٨
Machine Learning on Kubernetes Machine Learning on Kubernetes
٢٠٢٢
Automated Machine Learning on AWS Automated Machine Learning on AWS
٢٠٢٢