Advanced Statistical Analytics for Health Data Science with SAS and R Advanced Statistical Analytics for Health Data Science with SAS and R
Chapman & Hall/CRC Biostatistics Series

Advanced Statistical Analytics for Health Data Science with SAS and R

    • US$119.99
    • US$119.99

출판사 설명

In recent years, there has been a growing emphasis on making statistical methods and analytics accessible to health data science researchers and students. Following the first book on "Statistical Analytics for Health Data Science with SAS and R" (2023, www.routledge.com/9781032325620), this book serves as a comprehensive reference for health data scientists, bridging fundamental statistical principles with advanced analytical techniques. By providing clear explanations of statistical theory and its application to real- world health data, we aim to equip researchers with the necessary tools to navigate the evolving landscape of health data science.

Designed for advanced-level data scientists, this book covers a wide range of statistical methodologies, including models for longitudinal data with time-dependent covariates, multi-membership mixed-effects models, statistical modeling of survival data, Bayesian statistics, joint modeling of longitudinal and survival data, nonlinear regression, statistical meta-analysis, spatial statistics, structural equation modeling, latent growth curve modeling, causal inference, and propensity score analysis.

A key feature of this book is its emphasis on real-world applications. We integrate publicly available health datasets and provide case studies from a variety of health applications. These practical examples demonstrate how statistical methods can be applied to solve critical problems in health science.

To support hands-on learning, we offer implementation guidance using SAS and R, ensuring that readers can replicate analyses and apply statistical techniques to their own research. Step-by-step computational examples facilitate reproducibility and deeper exploration of statistical models. By combining theoretical foundations with practical applications, this book empowers health data scientists to develop robust statistical solutions for complex health challenges. Whether working in academia, industry, or public health, readers will gain the expertise to advance data-driven decision-making and contribute to evidence-based health research.

장르
과학 및 자연
출시일
2025년
9월 16일
언어
EN
영어
길이
265
페이지
출판사
CRC Press
판매자
Taylor & Francis Group
크기
16.1
MB
Applied Meta-Analysis with R and Stata Applied Meta-Analysis with R and Stata
2021년
Statistical Causal Inferences and Their Applications in Public Health Research Statistical Causal Inferences and Their Applications in Public Health Research
2016년
Modern Biostatistical Methods for Evidence-Based Global Health Research Modern Biostatistical Methods for Evidence-Based Global Health Research
2022년
Statistical Regression Modeling with R Statistical Regression Modeling with R
2021년
Statistical Modeling in Biomedical Research Statistical Modeling in Biomedical Research
2020년
Contemporary Biostatistics with Biopharmaceutical Applications Contemporary Biostatistics with Biopharmaceutical Applications
2019년
Real-World Evidence in Drug Development and Evaluation Real-World Evidence in Drug Development and Evaluation
2021년
Medical Risk Prediction Models Medical Risk Prediction Models
2021년
Biomarker Analysis in Clinical Trials with R Biomarker Analysis in Clinical Trials with R
2020년
Biosimilar Clinical Development: Scientific Considerations and New Methodologies Biosimilar Clinical Development: Scientific Considerations and New Methodologies
2016년
Innovative Methods for Rare Disease Drug Development Innovative Methods for Rare Disease Drug Development
2020년
Statistical Design, Monitoring, and Analysis of Clinical Trials Statistical Design, Monitoring, and Analysis of Clinical Trials
2021년