Asymptotic Nonparametric Statistical Analysis of Stationary Time Series Asymptotic Nonparametric Statistical Analysis of Stationary Time Series
SpringerBriefs in Computer Science

Asymptotic Nonparametric Statistical Analysis of Stationary Time Series

    • US$39.99
    • US$39.99

출판사 설명

Stationarity is a very general, qualitative assumption, that can be assessed on the basis of application specifics. It is thus  a rather attractive assumption to base statistical analysis on, especially for problems for which less general qualitative assumptions, such as independence or finite memory, clearly fail. However, it has long been considered too general to be able to make statistical inference. One of the reasons for this is that rates of convergence, even of frequencies to the mean, are not available under this assumption alone.  Recently, it has been shown that, while some natural and simple problems, such as homogeneity, are indeed provably impossible to solve if one only assumes that the data is stationary (or stationary ergodic), many others can be solved with rather simple and intuitive algorithms. The latter include clustering and change point estimation among others. In this volume these  results are summarize.  The emphasis is on asymptotic consistency, since this the strongest property one can obtain assuming stationarity alone. While for most of the problem for which  a solution is found this solution is algorithmically realizable, the main objective in this area of research, the objective which is only partially attained, is to understand what is possible and what is not possible to do for stationary time series. The considered problems include homogeneity testing (the so-called two sample problem), clustering with respect to distribution, clustering with respect to independence, change point estimation, identity testing, and the general problem of composite hypotheses testing. For the latter problem, a topological criterion for the existence of a consistent test is presented.  In addition, a number of open problems is presented.

장르
컴퓨터 및 인터넷
출시일
2019년
3월 7일
언어
EN
영어
길이
85
페이지
출판사
Springer International Publishing
판매자
Springer Nature B.V.
크기
2.3
MB
Algorithmic Learning in a Random World Algorithmic Learning in a Random World
2022년
Combining Soft Computing and Statistical Methods in Data Analysis Combining Soft Computing and Statistical Methods in Data Analysis
2010년
Learning Theory Learning Theory
2007년
Analytical and Computational Methods in Probability Theory Analytical and Computational Methods in Probability Theory
2017년
Large-Scale Scientific Computing Large-Scale Scientific Computing
2022년
Dynamic System Identification: Experiment Design and Data Analysis Dynamic System Identification: Experiment Design and Data Analysis
1977년
Universal Time-Series Forecasting with Mixture Predictors Universal Time-Series Forecasting with Mixture Predictors
2020년
Recent Advances in Reinforcement Learning Recent Advances in Reinforcement Learning
2008년
The Amazing Journey of Reason The Amazing Journey of Reason
2019년
The Mathematical Theory of Semantic Communication The Mathematical Theory of Semantic Communication
2025년
Developing Sustainable and Energy-Efficient Software Systems Developing Sustainable and Energy-Efficient Software Systems
2023년
Health Informatics in the Cloud Health Informatics in the Cloud
2012년
Objective Information Theory Objective Information Theory
2023년
Manifold Learning Manifold Learning
2024년