Automatic Differentiation: Applications, Theory, and Implementations Automatic Differentiation: Applications, Theory, and Implementations

Automatic Differentiation: Applications, Theory, and Implementations

H. Martin Bücker và các tác giả khác
    • 139,99 US$
    • 139,99 US$

Lời Giới Thiệu Của Nhà Xuất Bản

This collection covers the state of the art in automatic differentiation theory and practice. Practitioners and students will learn about advances in automatic differentiation techniques and strategies for the implementation of robust and powerful tools. Computational scientists and engineers will benefit from the discussion of applications, which provide insight into effective strategies for using automatic differentiation for design optimization, sensitivity analysis, and uncertainty quantification.

THỂ LOẠI
Máy Vi Tính & Internet
ĐÃ PHÁT HÀNH
2006
3 tháng 2
NGÔN NGỮ
EN
Tiếng Anh
ĐỘ DÀI
388
Trang
NHÀ XUẤT BẢN
Springer Berlin Heidelberg
NGƯỜI BÁN
Springer Nature B.V.
KÍCH THƯỚC
13,5
Mb
Numerical Computations: Theory and Algorithms Numerical Computations: Theory and Algorithms
2020
Large-Scale Scientific Computing Large-Scale Scientific Computing
2018
Numerical Methods and Applications Numerical Methods and Applications
2019
Large-Scale Scientific Computing Large-Scale Scientific Computing
2022
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014 Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014
2015
Computational Science and Its Applications – ICCSA 2021 Computational Science and Its Applications – ICCSA 2021
2021