Bankruptcy Prediction through Soft Computing based Deep Learning Technique Bankruptcy Prediction through Soft Computing based Deep Learning Technique

Bankruptcy Prediction through Soft Computing based Deep Learning Technique

    • US$39.99
    • US$39.99

来自出版社的简介

This book proposes complex hierarchical deep architectures (HDA) for predicting bankruptcy, a topical issue for business and corporate institutions that in the past has been tackled using statistical, market-based and machine-intelligence prediction models. The HDA are formed through fuzzy rough tensor deep staking networks (FRTDSN) with structured, hierarchical rough Bayesian (HRB) models. FRTDSN is formalized through TDSN and fuzzy rough sets, and HRB is formed by incorporating probabilistic rough sets in structured hierarchical Bayesian model. Then FRTDSN is integrated with HRB to form the compound FRTDSN-HRB model. HRB enhances the prediction accuracy of FRTDSN-HRB model. The experimental datasets are adopted from Korean construction companies and American and European non-financial companies, and the research presented focuses on the impact of choice of cut-off points, sampling procedures and business cycle on the accuracy of bankruptcy prediction models.

The book alsohighlights the fact that misclassification can result in erroneous predictions leading to prohibitive costs to investors and the economy, and shows that choice of cut-off point and sampling procedures affect rankings of various models. It also suggests that empirical cut-off points estimated from training samples result in the lowest misclassification costs for all the models. The book confirms that FRTDSN-HRB achieves superior performance compared to other statistical and soft-computing models. The experimental results are given in terms of several important statistical parameters revolving different business cycles and sub-cycles for the datasets considered and are of immense benefit to researchers working in this area.

类型
计算机与互联网
上架日期
2017年
12月1日
语言
EN
英文
长度
119
出版社
Springer Nature Singapore
销售商
Springer Nature B.V.
大小
3
MB
Computational Intelligence in Economics and Finance Computational Intelligence in Economics and Finance
2007年
Mining Data for Financial Applications Mining Data for Financial Applications
2020年
Cutting-Edge Research Topics on Multiple Criteria Decision Making Cutting-Edge Research Topics on Multiple Criteria Decision Making
2009年
ECML PKDD 2018 Workshops ECML PKDD 2018 Workshops
2019年
Sharing Data and Models in Software Engineering Sharing Data and Models in Software Engineering
2014年
SAS for Finance SAS for Finance
2018年
Quantitative Modeling of Operational Risk in Finance and Banking Using Possibility Theory Quantitative Modeling of Operational Risk in Finance and Banking Using Possibility Theory
2015年
Optical Character Recognition Systems for Different Languages with Soft Computing Optical Character Recognition Systems for Different Languages with Soft Computing
2016年