Bifurcation Dynamics in Polynomial Discrete Systems Bifurcation Dynamics in Polynomial Discrete Systems
Nonlinear Physical Science

Bifurcation Dynamics in Polynomial Discrete Systems

    • $139.99
    • $139.99

Publisher Description

This is the first book focusing on bifurcation dynamics in 1-dimensional polynomial nonlinear discrete systems. It comprehensively discusses the general mathematical conditions of bifurcations in polynomial nonlinear discrete systems, as well as appearing and switching bifurcations for simple and higher-order singularity period-1 fixed-points in the 1-dimensional polynomial discrete systems. Further, it analyzes the bifurcation trees of period-1 to chaos generated by period-doubling, and monotonic saddle-node bifurcations. Lastly, the book presents methods for period-2 and period-doubling renormalization for polynomial discrete systems, and describes the appearing mechanism and period-doublization of period-n fixed-points on bifurcation trees for the first time, offering readers fascinating insights into recent research results in nonlinear discrete systems.

GENRE
Science & Nature
RELEASED
2020
November 9
LANGUAGE
EN
English
LENGTH
441
Pages
PUBLISHER
Springer Nature Singapore
SELLER
Springer Nature B.V.
SIZE
58.3
MB
Two-Dimensional Constant and Product Polynomial Systems Two-Dimensional Constant and Product Polynomial Systems
2025
Analytical Dynamics of Nonlinear Rotors Analytical Dynamics of Nonlinear Rotors
2025
Limit Cycles and Homoclinic Networks in Two-Dimensional Polynomial Systems Limit Cycles and Homoclinic Networks in Two-Dimensional Polynomial Systems
2025
Two-dimensional Crossing and Product Cubic Systems, Vol. II Two-dimensional Crossing and Product Cubic Systems, Vol. II
2025
1-dimensional Flow Arrays and Bifurcations in Planar Polynomial Systems 1-dimensional Flow Arrays and Bifurcations in Planar Polynomial Systems
2024
Two-dimensional Self-independent Variable Cubic Nonlinear Systems Two-dimensional Self-independent Variable Cubic Nonlinear Systems
2024
Random Vibration with Machine Learning Method Random Vibration with Machine Learning Method
2025
Fractional Derivatives for Physicists and Engineers Fractional Derivatives for Physicists and Engineers
2025
Analytical Dynamics of Nonlinear Rotors Analytical Dynamics of Nonlinear Rotors
2025
Electron-Photon Cascades Electron-Photon Cascades
2024
Dynamical Phase Transitions in Chaotic Systems Dynamical Phase Transitions in Chaotic Systems
2023
Two-Dimensional Quadratic Nonlinear Systems Two-Dimensional Quadratic Nonlinear Systems
2023