Boundary Value Problems and Hardy Spaces for Elliptic Systems with Block Structure Boundary Value Problems and Hardy Spaces for Elliptic Systems with Block Structure
Progress in Mathematics

Boundary Value Problems and Hardy Spaces for Elliptic Systems with Block Structure

    • $119.99
    • $119.99

Publisher Description

In this monograph, for elliptic systems with block structure in the upper half-space and t-independent coefficients, the authors settle the study of boundary value problems by proving compatible well-posedness of Dirichlet, regularity and Neumann problems in optimal ranges of exponents.  Prior to this work, only the two-dimensional situation was fully understood. In higher dimensions, partial results for existence in smaller ranges of exponents and for a subclass of such systems had been established.  The presented uniqueness results are completely new, and the authors also elucidate optimal ranges for problems with fractional regularity data.The first part of the monograph, which can be read independently, provides optimal ranges of exponents for functional calculus and adapted Hardy spaces for the associated boundary operator.  Methods use and improve, with new results, all the machinery developed over the last two decades to study such problems:  the Kato square root estimates and Riesz transforms, Hardy spaces associated to operators, off-diagonal estimates, non-tangential estimates and square functions, and abstract layer potentials to replace fundamental solutions in the absence of local regularity of solutions.

GENRE
Science & Nature
RELEASED
2023
July 27
LANGUAGE
EN
English
LENGTH
323
Pages
PUBLISHER
Springer International Publishing
SELLER
Springer Nature B.V.
SIZE
20.1
MB
Differential Geometry and Analysis on CR Manifolds Differential Geometry and Analysis on CR Manifolds
2007
Singular Integral Operators, Quantitative Flatness, and Boundary Problems Singular Integral Operators, Quantitative Flatness, and Boundary Problems
2022
Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification
2022
Representation Theory, Mathematical Physics, and Integrable Systems Representation Theory, Mathematical Physics, and Integrable Systems
2022
Cubic Forms and the Circle Method Cubic Forms and the Circle Method
2021
Representation Theory, Number Theory, and Invariant Theory Representation Theory, Number Theory, and Invariant Theory
2017