Cause Effect Pairs in Machine Learning Cause Effect Pairs in Machine Learning
The Springer Series on Challenges in Machine Learning

Cause Effect Pairs in Machine Learning

Isabelle Guyon والمزيد
    • ‏84٫99 US$
    • ‏84٫99 US$

وصف الناشر

This book presents ground-breaking advances in the domain of causal structure learning. The problem of distinguishing cause from effect (“Does altitude cause a change in atmospheric pressure, or vice versa?”) is here cast as a binary classification problem, to be tackled by machine learning algorithms.  Based on the results of the ChaLearn Cause-Effect Pairs Challenge, this book reveals that the joint distribution of two variables can be scrutinized by machine learning algorithms to reveal the possible existence of a “causal mechanism”, in the sense that the values of one variable may have been generated from the values of the other.  
This book provides both tutorial material on the state-of-the-art on cause-effect pairs and exposes the reader to more advanced material, with a collection of selected papers. Supplemental material includes videos, slides, and code which can be found on the workshop website.

Discovering causal relationships from observational data will become increasingly important in data science with the increasing amount of available data, as a means of detecting potential triggers in epidemiology, social sciences, economy, biology, medicine, and other sciences.

النوع
كمبيوتر وإنترنت
تاريخ النشر
٢٠١٩
٢٢ أكتوبر
اللغة
EN
الإنجليزية
عدد الصفحات
٣٨٨
الناشر
Springer International Publishing
البائع
Springer Nature B.V.
الحجم
٤١٫٥
‫م.ب.‬
Elements of Causal Inference Elements of Causal Inference
٢٠١٧
Statistical Causal Discovery: LiNGAM Approach Statistical Causal Discovery: LiNGAM Approach
٢٠٢٢
COMPSTAT 2008 COMPSTAT 2008
٢٠٠٨
Topics in Statistical Simulation Topics in Statistical Simulation
٢٠١٤
Machine Learning Machine Learning
٢٠١٢
Proceedings of COMPSTAT'2010 Proceedings of COMPSTAT'2010
٢٠١٠
Explainable and Interpretable Models in Computer Vision and Machine Learning Explainable and Interpretable Models in Computer Vision and Machine Learning
٢٠١٨
Comme une flambée d'oiseaux battant des ailes Comme une flambée d'oiseaux battant des ailes
٢٠١٩
Gesture Recognition Gesture Recognition
٢٠١٧
Neural Connectomics Challenge Neural Connectomics Challenge
٢٠١٧
Les sourds sont-ils mal entendus ? Les sourds sont-ils mal entendus ?
٢٠١٦
Identification Identification
٢٠١٠
Automated Machine Learning Automated Machine Learning
٢٠١٩
Explainable and Interpretable Models in Computer Vision and Machine Learning Explainable and Interpretable Models in Computer Vision and Machine Learning
٢٠١٨
The NeurIPS '18 Competition The NeurIPS '18 Competition
٢٠١٩
Inpainting and Denoising Challenges Inpainting and Denoising Challenges
٢٠١٩
The NIPS '17 Competition: Building Intelligent Systems The NIPS '17 Competition: Building Intelligent Systems
٢٠١٨
Gesture Recognition Gesture Recognition
٢٠١٧