Classical Summability Theory Classical Summability Theory

Classical Summability Theory

    • US$79.99
    • US$79.99

출판사 설명

This book presents results about certain summability methods, such as the Abel method, the Norlund method, the Weighted mean method, the Euler method and the Natarajan method, which have not appeared in many standard books. It proves a few results on the Cauchy multiplication of certain summable series and some product theorems. It also proves a number of Steinhaus type theorems. In addition, it introduces a new definition of convergence of a double sequence and double series and proves the Silverman-Toeplitz theorem for four-dimensional infinite matrices, as well as Schur's and Steinhaus theorems for four-dimensional infinite matrices. The Norlund method, the Weighted mean method and the Natarajan method for double sequences are also discussed in the context of the new definition. Divided into six chapters, the book supplements the material already discussed in G.H.Hardy's Divergent Series. It appeals to young researchers and experienced mathematicians who wish to explore new areasin Summability Theory..

장르
과학 및 자연
출시일
2017년
4월 25일
언어
EN
영어
길이
141
페이지
출판사
Springer Nature Singapore
판매자
Springer Nature B.V.
크기
3.4
MB
An Introduction to Ultrametric Summability Theory An Introduction to Ultrametric Summability Theory
2015년
Current Topics in Summability Theory and Applications Current Topics in Summability Theory and Applications
2016년
Taylor Coefficients and Coefficient Multipliers of Hardy and Bergman-Type Spaces Taylor Coefficients and Coefficient Multipliers of Hardy and Bergman-Type Spaces
2016년
Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations
2014년
Rigorous Time Slicing Approach to Feynman Path Integrals Rigorous Time Slicing Approach to Feynman Path Integrals
2017년
The Borel-Cantelli Lemma The Borel-Cantelli Lemma
2012년
Functional Analysis and Summability Functional Analysis and Summability
2020년
An Introduction to Ultrametric Summability Theory An Introduction to Ultrametric Summability Theory
2015년
An Introduction to Ultrametric Summability Theory An Introduction to Ultrametric Summability Theory
2013년