Computer Vision Computer Vision

Computer Vision

Models, Learning, and Inference

    • US$94.99
    • US$94.99

출판사 설명

This modern treatment of computer vision focuses on learning and inference in probabilistic models as a unifying theme. It shows how to use training data to learn the relationships between the observed image data and the aspects of the world that we wish to estimate, such as the 3D structure or the object class, and how to exploit these relationships to make new inferences about the world from new image data. With minimal prerequisites, the book starts from the basics of probability and model fitting and works up to real examples that the reader can implement and modify to build useful vision systems. Primarily meant for advanced undergraduate and graduate students, the detailed methodological presentation will also be useful for practitioners of computer vision. • Covers cutting-edge techniques, including graph cuts, machine learning and multiple view geometry • A unified approach shows the common basis for solutions of important computer vision problems, such as camera calibration, face recognition and object tracking • More than 70 algorithms are described in sufficient detail to implement • More than 350 full-color illustrations amplify the text • The treatment is self-contained, including all of the background mathematics • Additional resources at www.computervisionmodels.com

장르
컴퓨터 및 인터넷
출시일
2012년
6월 18일
언어
EN
영어
길이
804
페이지
출판사
Cambridge University Press
판매자
Cambridge University Press
크기
51.3
MB
Probabilistic Machine Learning Probabilistic Machine Learning
2022년
Pro Deep Learning with TensorFlow Pro Deep Learning with TensorFlow
2017년
The Elements of Statistical Learning The Elements of Statistical Learning
2009년
Data-Driven Science and Engineering Data-Driven Science and Engineering
2019년
The Grammar of Graphics The Grammar of Graphics
2006년
Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision
2004년