Computing Qualitatively Correct Approximations of Balance Laws Computing Qualitatively Correct Approximations of Balance Laws
SEMA SIMAI Springer Series

Computing Qualitatively Correct Approximations of Balance Laws

Exponential-Fit, Well-Balanced and Asymptotic-Preserving

    • ‏84٫99 US$
    • ‏84٫99 US$

وصف الناشر

Substantial effort has been drawn for years onto the development of (possibly high-order) numerical techniques for the scalar homogeneous conservation law, an equation which is strongly dissipative in L1 thanks to shock wave formation. Such a dissipation property is generally lost when considering hyperbolic systems of conservation laws, or simply inhomogeneous scalar balance laws involving accretive or space-dependent source terms, because of complex wave interactions. An overall weaker dissipation can reveal intrinsic numerical weaknesses through specific nonlinear mechanisms: Hugoniot curves being deformed by local averaging steps in Godunov-type schemes, low-order errors propagating along expanding characteristics after having hit a discontinuity, exponential amplification of truncation errors in the presence of accretive source terms... This book aims at presenting rigorous derivations of different, sometimes called well-balanced, numerical schemes which succeed in reconciling high accuracy with a stronger robustness even in the aforementioned accretive contexts. It is divided into two parts: one dealing with hyperbolic systems of balance laws, such as arising from quasi-one dimensional nozzle flow computations, multiphase WKB approximation of linear Schrödinger equations, or gravitational Navier-Stokes systems. Stability results for viscosity solutions of onedimensional balance laws are sketched. The other being entirely devoted to the treatment of weakly nonlinear kinetic equations in the discrete ordinate approximation, such as the ones of radiative transfer, chemotaxis dynamics, semiconductor conduction, spray dynamics of linearized Boltzmann models. “Caseology” is one of the main techniques used in these derivations. Lagrangian techniques for filtration equationsare evoked too. Two-dimensional methods are studied in the context of non-degenerate semiconductor models.

النوع
علم وطبيعة
تاريخ النشر
٢٠١٣
٣٠ مارس
اللغة
EN
الإنجليزية
عدد الصفحات
٣٦٠
الناشر
Springer Milan
البائع
Springer Nature B.V.
الحجم
٩٫٤
‫م.ب.‬
Innovative Algorithms and Analysis Innovative Algorithms and Analysis
٢٠١٦
Active Particles, Volume 2 Active Particles, Volume 2
٢٠١٩
Nonlinear Partial Differential Equations Nonlinear Partial Differential Equations
٢٠١٢
Handbook of Mathematical Fluid Dynamics Handbook of Mathematical Fluid Dynamics
٢٠٠٢
Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions
٢٠١٧
Dynamics of Partial Differential Equations Dynamics of Partial Differential Equations
٢٠١٥
Advances in Numerical Simulation in Physics and Engineering Advances in Numerical Simulation in Physics and Engineering
٢٠١٤
Advances in Differential Equations and Applications Advances in Differential Equations and Applications
٢٠١٤
New Challenges in Grid Generation and Adaptivity for Scientific Computing New Challenges in Grid Generation and Adaptivity for Scientific Computing
٢٠١٥
Mesoscopic Theories of Heat Transport in Nanosystems Mesoscopic Theories of Heat Transport in Nanosystems
٢٠١٦
Nonlinear Dynamics in Biological Systems Nonlinear Dynamics in Biological Systems
٢٠١٦
Trends in Differential Equations and Applications Trends in Differential Equations and Applications
٢٠١٦