Conformal Prediction for Reliable Machine Learning Conformal Prediction for Reliable Machine Learning

Conformal Prediction for Reliable Machine Learning

Theory, Adaptations and Applications

    • $124.99
    • $124.99

Publisher Description

The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detection. As practitioners and researchers around the world apply and adapt the framework, this edited volume brings together these bodies of work, providing a springboard for further research as well as a handbook for application in real-world problems.

Understand the theoretical foundations of this important framework that can provide a reliable measure of confidence with predictions in machine learningBe able to apply this framework to real-world problems in different machine learning settings, including classification, regression, and clusteringLearn effective ways of adapting the framework to newer problem settings, such as active learning, model selection, or change detection

GENRE
Computers & Internet
RELEASED
2014
April 23
LANGUAGE
EN
English
LENGTH
334
Pages
PUBLISHER
Morgan Kaufmann
SELLER
Elsevier Ltd.
SIZE
16.4
MB
Conformal and Probabilistic Prediction with Applications Conformal and Probabilistic Prediction with Applications
2016
Machine Learning from Weak Supervision Machine Learning from Weak Supervision
2022
Machine Learning Machine Learning
2021
Machine Learning in Computer Vision Machine Learning in Computer Vision
2006
Modeling Decisions for Artificial Intelligence Modeling Decisions for Artificial Intelligence
2022
Statistical Analysis Techniques in Particle Physics Statistical Analysis Techniques in Particle Physics
2013