Conformal Prediction for Reliable Machine Learning Conformal Prediction for Reliable Machine Learning

Conformal Prediction for Reliable Machine Learning

Theory, Adaptations and Applications

Vineeth Balasubramanian والمزيد
    • ‏124٫99 US$
    • ‏124٫99 US$

وصف الناشر

The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detection. As practitioners and researchers around the world apply and adapt the framework, this edited volume brings together these bodies of work, providing a springboard for further research as well as a handbook for application in real-world problems.

Understand the theoretical foundations of this important framework that can provide a reliable measure of confidence with predictions in machine learningBe able to apply this framework to real-world problems in different machine learning settings, including classification, regression, and clusteringLearn effective ways of adapting the framework to newer problem settings, such as active learning, model selection, or change detection

النوع
كمبيوتر وإنترنت
تاريخ النشر
٢٠١٤
٢٣ أبريل
اللغة
EN
الإنجليزية
عدد الصفحات
٣٣٤
الناشر
Morgan Kaufmann
البائع
Elsevier Ltd.
الحجم
١٦٫٤
‫م.ب.‬
Conformal and Probabilistic Prediction with Applications Conformal and Probabilistic Prediction with Applications
٢٠١٦
Machine Learning from Weak Supervision Machine Learning from Weak Supervision
٢٠٢٢
Machine Learning Machine Learning
٢٠٢١
Machine Learning in Computer Vision Machine Learning in Computer Vision
٢٠٠٦
Modeling Decisions for Artificial Intelligence Modeling Decisions for Artificial Intelligence
٢٠٢٢
Statistical Analysis Techniques in Particle Physics Statistical Analysis Techniques in Particle Physics
٢٠١٣