Data Mining Data Mining

Data Mining

The Textbook

    • US$49.99
    • US$49.99

출판사 설명

This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues. It goes beyond the traditional focus on data mining problems to introduce advanced data types such as text, time series, discrete sequences, spatial data, graph data, and social networks. Until now, no single book has addressed all these topics in a comprehensive and integrated way. The chapters of this book fall into one of three categories:
Fundamental chapters: Data mining has four main problems, which correspond to clustering, classification, association pattern mining, and outlier analysis. These chapters comprehensively discuss a wide variety of methods for these problems. Domain chapters: These chapters discuss the specific methods used for different domains of data such as text data, time-series data, sequence data, graph data, and spatial data. Application chapters: These chapters study important applications such as stream mining, Web mining, ranking, recommendations, social networks, and privacy preservation. The domain chapters also have an applied flavor.
Appropriate for both introductory and advanced data mining courses, Data Mining: The Textbook balances mathematical details and intuition. It contains the necessary mathematical details for professors and researchers, but it is presented in a simple and intuitive style to improve accessibility for students and industrial practitioners (including those with a limited mathematical background). Numerous illustrations, examples, and exercises are included, with an emphasis on semantically interpretable examples.

Praise for Data Mining: The Textbook -

“As I read through this book, I have already decided to use it in my classes.  This is a book written by an outstanding researcher who has made fundamental contributions to data mining, in a way that is both accessible and up to date.  The book is complete with theory and practical use cases.  It’s a must-have for students and professors alike!" -- Qiang Yang, Chair of Computer Science and Engineering at Hong Kong University of Science and Technology

"This is the most amazing and comprehensive text book on data mining. It covers not only the fundamental problems, such as clustering, classification, outliers and frequent patterns, and different data types, including text, time series, sequences, spatial data and graphs, but also various applications, such as recommenders, Web, social network and privacy.  It is a great book for graduate students and researchers as well as practitioners." -- Philip S. Yu, UIC Distinguished Professor and Wexler Chair in Information Technology at University of Illinois at Chicago

장르
컴퓨터 및 인터넷
출시일
2015년
4월 13일
언어
EN
영어
길이
763
페이지
출판사
Springer International Publishing
판매자
Springer Nature B.V.
크기
14.4
MB
Advances in ICT for Business, Industry and Public Sector Advances in ICT for Business, Industry and Public Sector
2010년
Knowledge Discovery in Databases: PKDD 2007 Knowledge Discovery in Databases: PKDD 2007
2007년
Data Mining: Concepts and Techniques Data Mining: Concepts and Techniques
2011년
Data Mining Data Mining
2019년
Advances in Intelligent Data Analysis XIV Advances in Intelligent Data Analysis XIV
2015년
Compression Schemes for Mining Large Datasets Compression Schemes for Mining Large Datasets
2013년
Neural Networks and Deep Learning Neural Networks and Deep Learning
2018년
Linear Algebra and Optimization for Machine Learning Linear Algebra and Optimization for Machine Learning
2020년
Neural Networks and Deep Learning Neural Networks and Deep Learning
2023년
Recommender Systems Recommender Systems
2016년
Machine Learning for Text Machine Learning for Text
2018년
Social Network Data Analytics Social Network Data Analytics
2011년