Data Science and Predictive Analytics Data Science and Predictive Analytics
The Springer Series in Applied Machine Learning

Data Science and Predictive Analytics

Biomedical and Health Applications using R

    • 69,99 US$
    • 69,99 US$

Lời Giới Thiệu Của Nhà Xuất Bản

Complementary to the enormous challenges related to handling, interrogating, and understanding massive amounts of complex structured and unstructured data, there are unique opportunities that come with access to a wealth of feature-rich, high-dimensional, and time-varying information. The topics covered in this textbook address specific knowledge gaps, resolve educational barriers, and mitigate workforce information readiness and data science deficiencies. Specifically, it provides a transdisciplinary curriculum integrating core mathematical foundations, modern computational methods, advanced data science techniques, model-based machine learning (ML), model-free artificial intelligence (AI), and innovative biomedical applications.
The book’s fourteen chapters start with an introduction and progressively build the foundational skills from visualization to linear modeling, dimensionality reduction, supervised classification, black-box machine learning techniques, qualitative learning methods, unsupervised clustering, model performance assessment, feature selection strategies, longitudinal data analytics, optimization, neural networks, and deep learning. Individual modules and complete end-to-end pipeline protocols are available as functional R electronic markdown notebooks. These workflows support an active learning platform for comprehensive data manipulation, sophisticated analytics, interactive visualization, and effective dissemination of open problems, current knowledge, scientific tools, and research findings.
This Second Edition includes new material reflecting recent scientific and technological progress and a substantial content reorganization to streamline the covered topics. Featured are learning-based strategies utilizing generative adversarial networks (GANs), transfer learning, and synthetic data generation. There are complete end-to-end examples of ML/AI training, prediction, and assessment using quantitative, qualitative, text, and imaging datasets.
This textbook is suitable for self-learning and instructor-guided course training. It is appropriate for upper division and graduate-level courses covering applied and interdisciplinary mathematics, contemporary learning-based data science techniques, computational algorithm development, optimization theory, statistical computing, and biomedical sciences. The analytical techniques and predictive scientific methods described in the book may be useful to a wide spectrum of readers, formal and informal learners, college instructors, researchers, and engineers throughout the academy, industry, government, regulatory and funding agencies.

THỂ LOẠI
Máy Vi Tính & Internet
ĐÃ PHÁT HÀNH
2023
16 tháng 2
NGÔN NGỮ
EN
Tiếng Anh
ĐỘ DÀI
952
Trang
NHÀ XUẤT BẢN
Springer International Publishing
NGƯỜI BÁN
Springer Nature B.V.
KÍCH THƯỚC
495,8
Mb
Data Mining Data Mining
2007
Guide to Intelligent Data Science Guide to Intelligent Data Science
2020
Modern Deep Learning for Tabular Data Modern Deep Learning for Tabular Data
2022
Compression Schemes for Mining Large Datasets Compression Schemes for Mining Large Datasets
2013
Representation in Machine Learning Representation in Machine Learning
2023
Advances in Knowledge Discovery and Data Mining Advances in Knowledge Discovery and Data Mining
2010
Large Language Models for Sustainable Urban Development Large Language Models for Sustainable Urban Development
2025
Affective Computing for Social Good Affective Computing for Social Good
2024
Artificial Intelligence and Edge Computing for Sustainable Ocean Health Artificial Intelligence and Edge Computing for Sustainable Ocean Health
2024
Artificial Intelligence-based Healthcare Systems Artificial Intelligence-based Healthcare Systems
2023
Thinking Data Science Thinking Data Science
2023