Deep Learning for Unmanned Systems Deep Learning for Unmanned Systems

Deep Learning for Unmanned Systems

    • $189.99
    • $189.99

Publisher Description

This book is used at the graduate or advanced undergraduate level and many others. Manned and unmanned ground, aerial and marine vehicles enable many promising and revolutionary civilian and military applications that will change our life in the near future. These applications include, but are not limited to, surveillance, search and rescue, environment monitoring, infrastructure monitoring, self-driving cars, contactless last-mile delivery vehicles, autonomous ships, precision agriculture and transmission line inspection to name just a few. These vehicles will benefit from advances of deep learning as a subfield of machine learning able to endow these vehicles with different capability such as perception, situation awareness, planning and intelligent control. Deep learning models also have the ability to generate actionable insights into the complex structures of large data sets.
In recent years, deep learning research has received an increasing amount of attention from researchers in academia, government laboratories and industry. These research activities have borne some fruit in tackling some of the challenging problems of manned and unmanned ground, aerial and marine vehicles that are still open. Moreover, deep learning methods have been recently actively developed in other areas of machine learning, including reinforcement training and transfer/meta-learning, whereas standard, deep learning methods such as recent neural network (RNN) and coevolutionary neural networks (CNN). 
The book is primarily meant for researchers from academia and industry, who are working on in the research areas such as engineering, control engineering, robotics, mechatronics, biomedical engineering, mechanical engineering and computer science.The book chapters deal with the recent research problems in the areas of reinforcement learning-based control of UAVs and deep learning for unmanned aerial systems (UAS)The book chapters present various techniques of deep learning for robotic applications. The book chapters contain a good literature survey with a long list of references.The book chapters are well written with a good exposition of the research problem, methodology, block diagrams and mathematical techniques.The book chapters are lucidly illustrated with numerical examples and simulations.The book chapters discuss details of applications and future research areas.

GENRE
Professional & Technical
RELEASED
2021
October 1
LANGUAGE
EN
English
LENGTH
740
Pages
PUBLISHER
Springer International Publishing
SELLER
Springer Nature B.V.
SIZE
121.1
MB
Decision Making and Security Risk Management for IoT Environments Decision Making and Security Risk Management for IoT Environments
2024
Unmanned Aerial Vehicles Applications: Challenges and Trends Unmanned Aerial Vehicles Applications: Challenges and Trends
2023
Artificial Intelligence for Robotics and Autonomous Systems Applications Artificial Intelligence for Robotics and Autonomous Systems Applications
2023
Robot Operating System (ROS) Robot Operating System (ROS)
2023
Robot Operating System (ROS) Robot Operating System (ROS)
2021
Robot Operating System (ROS) Robot Operating System (ROS)
2020