Directed Polymers in Random Environments Directed Polymers in Random Environments
Lecture Notes in Mathematics

Directed Polymers in Random Environments

École d'Été de Probabilités de Saint-Flour XLVI – 2016

    • 34,99 $
    • 34,99 $

От издателя

Analyzing the phase transition from diffusive to localized behavior in a model of directed polymers in a random environment, this volume places particular emphasis on the localization phenomenon. The main questionis: What does the path of a random walk look like if rewards and penalties are spatially randomly distributed?This model, which provides a simplified version of stretched elastic chains pinned by random impurities, has attracted much research activity, but it (and its relatives) still holds many secrets, especially in high dimensions. It has non-gaussian scaling limits and it belongs to the so-called KPZ universality class when the space is one-dimensional. Adopting a Gibbsian approach, using general and powerful tools from probability theory, the discrete model is studied in full generality. Presenting the state-of-the art from different perspectives, and written in the form of a first course on the subject, this monographis aimed at researchers in probability or statistical physics, but is also accessible to masters and Ph.D. students.

ЖАНР
Наука и природа
РЕЛИЗ
2017
26 января
ЯЗЫК
EN
английский
ОБЪЕМ
215
стр.
ИЗДАТЕЛЬ
Springer International Publishing
ПРОДАВЕЦ
Springer Nature B.V.
РАЗМЕР
4,4
МБ
Planar Maps, Random Walks and Circle Packing Planar Maps, Random Walks and Circle Packing
2019
Mathematical Epidemiology Mathematical Epidemiology
2008
Introduction to ℓ²-invariants Introduction to ℓ²-invariants
2019
Hopf Algebras and Their Generalizations from a Category Theoretical Point of View Hopf Algebras and Their Generalizations from a Category Theoretical Point of View
2018
Ramanujan Summation of Divergent Series Ramanujan Summation of Divergent Series
2017
Large Deviations for Random Graphs Large Deviations for Random Graphs
2017