Domain Driven Data Mining Domain Driven Data Mining

Domain Driven Data Mining

Longbing Cao and Others
    • $109.99
    • $109.99

Publisher Description

In the present thriving global economy a need has evolved for complex data analysis to enhance an organization’s production systems, decision-making tactics, and performance. In turn, data mining has emerged as one of the most active areas in information technologies. Domain Driven Data Mining offers state-of the-art research and development outcomes on methodologies, techniques, approaches and successful applications in domain driven, actionable knowledge discovery.

About this book:
Enhances the actionability and wider deployment of existing data-centered data mining through a combination of domain and business oriented factors, constraints and intelligence.Examines real-world challenges to and complexities of the current KDD methodologies and techniques.Details a paradigm shift from "data-centered pattern mining" to "domain driven actionable knowledge discovery" for next-generation KDD research and applications. Bridges the gap between business expectations and research output through detailed exploration of the findings, thoughts and lessons learned in conducting several large-scale, real-world data mining business applicationsIncludes techniques, methodologies and case studies in real-life enterprise data miningAddresses new areas such as blog mining
Domain Driven Data Mining is suitable for researchers, practitioners and university students in the areas of data mining and knowledge discovery, knowledge engineering, human-computer interaction, artificial intelligence, intelligent information processing, decision support systems, knowledge management, and KDD project management.

GENRE
Computers & Internet
RELEASED
2010
January 8
LANGUAGE
EN
English
LENGTH
264
Pages
PUBLISHER
Springer US
SELLER
Springer Nature B.V.
SIZE
2.5
MB
Agents and Data Mining Interaction Agents and Data Mining Interaction
2009
Agent Intelligence Through Data Mining Agent Intelligence Through Data Mining
2006
Business Information Systems Business Information Systems
2010
Intelligent Techniques for Data Science Intelligent Techniques for Data Science
2016
Data Mining for Business Applications Data Mining for Business Applications
2008
Microsoft Data Mining (Enhanced Edition) Microsoft Data Mining (Enhanced Edition)
2001
Advances in Knowledge Discovery and Data Mining Advances in Knowledge Discovery and Data Mining
2025
Data Science: Foundations and Applications Data Science: Foundations and Applications
2025
Advances in Knowledge Discovery and Data Mining Advances in Knowledge Discovery and Data Mining
2025
Advances in Knowledge Discovery and Data Mining Advances in Knowledge Discovery and Data Mining
2025
Advances in Knowledge Discovery and Data Mining Advances in Knowledge Discovery and Data Mining
2025
Advances in Knowledge Discovery and Data Mining Advances in Knowledge Discovery and Data Mining
2025