Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling
Adaptation, Learning, and Optimization

Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling

    • $129.99
    • $129.99

Publisher Description

This book consists of eight chapters, authored by distinguished researchers and practitioners, that highlight the state of the art and recent trends in addressing the project portfolio selection and scheduling problem (PPSSP) across a variety of domains, particularly defense, social programs, supply chains, and finance. Many organizations face the challenge of selecting and scheduling a subset of available projects subject to various resource and operational constraints. In the simplest scenario, the primary objective for an organization is to maximize the value added through funding and implementing a portfolio of projects, subject to the available budget. However, there are other major difficulties that are often associated with this problem such as qualitative project benefits, multiple conflicting objectives, complex project interdependencies, workforce and manufacturing constraints, and deep uncertainty regarding project costs, benefits, and completion times.

It is well known that the PPSSP is an NP-hard problem and, thus, there is no known polynomial-time algorithm for this problem. Despite the complexity associated with solving the PPSSP, many traditional approaches to this problem make use of exact solvers. While exact solvers provide definitive optimal solutions, they quickly become prohibitively expensive in terms of computation time when the problem size is increased. In contrast, evolutionary and memetic computing afford the capability for autonomous heuristic approaches and expert knowledge to be combined and thereby provide an efficient means for high-quality approximation solutions to be attained. As such, these approaches can provide near real-time decision support information for portfolio design that can be used to augment and improve existing human-centric strategic decision-making processes.

This edited book provides the reader with a broad overview of the PPSSP, its associated challenges, and approaches to addressing the problem using evolutionary and memetic computing.

GENRE
Computers & Internet
RELEASED
2021
November 13
LANGUAGE
EN
English
LENGTH
222
Pages
PUBLISHER
Springer International Publishing
SELLER
Springer Nature B.V.
SIZE
14.4
MB
Reliability and Statistical Computing Reliability and Statistical Computing
2020
Supplier Selection Supplier Selection
2017
Federated and Transfer Learning Federated and Transfer Learning
2022
Adaptive Differential Evolution Adaptive Differential Evolution
2009
Computational Intelligence in Expensive Optimization Problems Computational Intelligence in Expensive Optimization Problems
2010
Exploitation of Linkage Learning in Evolutionary Algorithms Exploitation of Linkage Learning in Evolutionary Algorithms
2010
Differential Evolution in Electromagnetics Differential Evolution in Electromagnetics
2010
Agent-Based Evolutionary Search Agent-Based Evolutionary Search
2010