Fixed Point of the Parabolic Renormalization Operator Fixed Point of the Parabolic Renormalization Operator
SpringerBriefs in Mathematics

Fixed Point of the Parabolic Renormalization Operator

    • 39,99 $
    • 39,99 $

От издателя

This monograph grew out of the authors' efforts to provide a natural geometric description for the class of maps invariant under parabolic renormalization and for the Inou-Shishikura fixed point itself as well as to carry out a computer-assisted study of the parabolic renormalization operator. It introduces a renormalization-invariant class of analytic maps with a maximal domain of analyticity and rigid covering properties and presents a numerical scheme for computing parabolic renormalization of a germ, which is used to compute the Inou-Shishikura renormalization fixed point.

Inside, readers will find a detailed introduction into the theory of parabolic bifurcation,  Fatou coordinates, Écalle-Voronin conjugacy invariants of parabolic germs, and the definition and basic properties of parabolic renormalization.

The systematic view of parabolic renormalization developed in the book and the numerical approach to its study will be interesting to both expertsin the field as well as graduate students wishing to explore one of the frontiers of modern complex dynamics.

ЖАНР
Наука и природа
РЕЛИЗ
2014
1 ноября
ЯЗЫК
EN
английский
ОБЪЕМ
119
стр.
ИЗДАТЕЛЬ
Springer International Publishing
ПРОДАВЕЦ
Springer Nature B.V.
РАЗМЕР
4,1
МБ
Twisted Isospectrality, Homological Wideness, and Isometry Twisted Isospectrality, Homological Wideness, and Isometry
2023
Deep Learning for Fluid Simulation and Animation Deep Learning for Fluid Simulation and Animation
2023
Brakke's Mean Curvature Flow Brakke's Mean Curvature Flow
2019
Geodesic Convexity in Graphs Geodesic Convexity in Graphs
2013
Continuous Average Control of Piecewise Deterministic Markov Processes Continuous Average Control of Piecewise Deterministic Markov Processes
2013
Homogenisation of Laminated Metamaterials and the Inner Spectrum Homogenisation of Laminated Metamaterials and the Inner Spectrum
2025