Fractal Dimension for Fractal Structures Fractal Dimension for Fractal Structures
SEMA SIMAI Springer Series

Fractal Dimension for Fractal Structures

With Applications to Finance

    • $89.99
    • $89.99

Publisher Description

This book provides a generalised approach to fractal dimension theory from the standpoint of asymmetric topology by employing the concept of a fractal structure. The fractal dimension is the main invariant of a fractal set, and provides useful information regarding the irregularities it presents when examined at a suitable level of detail. New theoretical models for calculating the fractal dimension of any subset with respect to a fractal structure are posed to generalise both the Hausdorff and box-counting dimensions. Some specific results for self-similar sets are also proved. Unlike classical fractal dimensions, these new models can be used with empirical applications of fractal dimension including non-Euclidean contexts.

In addition, the book applies these fractal dimensions to explore long-memory in financial markets. In particular, novel results linking both fractal dimension and the Hurst exponent are provided. As such, the book provides a number of algorithms for properly calculating the self-similarity exponent of a wide range of processes, including (fractional) Brownian motion and Lévy stable processes. The algorithms also make it possible to analyse long-memory in real stocks and international indexes.

This book is addressed to those researchers interested in fractal geometry, self-similarity patterns, and computational applications involving fractal dimension and Hurst exponent.

GENRE
Science & Nature
RELEASED
2019
April 23
LANGUAGE
EN
English
LENGTH
221
Pages
PUBLISHER
Springer International Publishing
SELLER
Springer Nature B.V.
SIZE
19.9
MB
Biological Systems: Nonlinear Dynamics Approach Biological Systems: Nonlinear Dynamics Approach
2019
Current Trends in Dynamical Systems in Biology and Natural Sciences Current Trends in Dynamical Systems in Biology and Natural Sciences
2020
Orthogonal Polynomials: Current Trends and Applications Orthogonal Polynomials: Current Trends and Applications
2021
Advances in Trefftz Methods and Their Applications Advances in Trefftz Methods and Their Applications
2020
Numerical Simulation in Physics and Engineering: Trends and Applications Numerical Simulation in Physics and Engineering: Trends and Applications
2021
Trails in Kinetic Theory Trails in Kinetic Theory
2021