Fractal Zeta Functions and Fractal Drums Fractal Zeta Functions and Fractal Drums

Fractal Zeta Functions and Fractal Drums

Higher-Dimensional Theory of Complex Dimensions

Michel L. Lapidus and Others
    • $129.99
    • $129.99

Publisher Description

This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums. It provides a significant extension of the existing theory of zeta functions for fractal strings to fractal sets and arbitrary bounded sets in Euclidean spaces of any dimension. Two new classes of fractal zeta functions are introduced, namely, the distance and tube zeta functions of bounded sets, and their key properties are investigated. The theory is developed step-by-step at a slow pace, and every step is well motivated by numerous examples, historical remarks and comments, relating the objects under investigation to other concepts. Special emphasis is placed on the study of complex dimensions of bounded sets and their connections with the notions of Minkowski content and Minkowski measurability, as well as on fractal tube formulas. It is shown for the first time that essential singularities of fractal zeta functions can naturally emerge for various classes of fractal sets and have a significant geometric effect. The theory developed in this book leads naturally to a new definition of fractality, expressed in terms of the existence of underlying geometric oscillations or, equivalently, in terms of the existence of nonreal complex dimensions.  
The connections to previous extensive work of the first author and his collaborators on geometric zeta functions of fractal strings are clearly explained. Many concepts are discussed for the first time, making the book a rich source of new thoughts and ideas to be developed further. The book contains a large number of open problems and describes many possible directions for further research. The beginning chapters may be used as a part of a course on fractal geometry. The primary readership is aimed at graduate students and researchers working in Fractal Geometry and other related fields, such as Complex Analysis, Dynamical Systems, Geometric Measure Theory, Harmonic Analysis, Mathematical Physics, Analytic Number Theory and the Spectral Theory of Elliptic Differential Operators. The book should be accessible to nonexperts and newcomers to the field.

GENRE
Science & Nature
RELEASED
2017
June 7
LANGUAGE
EN
English
LENGTH
695
Pages
PUBLISHER
Springer International Publishing
SELLER
Springer Nature B.V.
SIZE
16.2
MB
Recent Developments in Fractals and Related Fields Recent Developments in Fractals and Related Fields
2010
Hyperbolic Problems and Regularity Questions Hyperbolic Problems and Regularity Questions
2007
Open Conformal Systems and Perturbations of Transfer Operators Open Conformal Systems and Perturbations of Transfer Operators
2018
Fractal Geometry and Stochastics IV Fractal Geometry and Stochastics IV
2010
Functional Analysis and Evolution Equations Functional Analysis and Evolution Equations
2008
Recent Developments in Fractals and Related Fields Recent Developments in Fractals and Related Fields
2017
QUANTIZED NUMBER THEORY, FRACTAL STRING & RIEMANN HYPOTHESIS QUANTIZED NUMBER THEORY, FRACTAL STRING & RIEMANN HYPOTHESIS
2021
Feynman's Operational Calculus and Beyond Feynman's Operational Calculus and Beyond
2015
Fractal Geometry, Complex Dimensions and Zeta Functions Fractal Geometry, Complex Dimensions and Zeta Functions
2007