Generalized Additive Models Generalized Additive Models
    • US$179.99

출판사 설명

This book describes an array of power tools for data analysis that are based on nonparametric regression and smoothing techniques. These methods relax the linear assumption of many standard models and allow analysts to uncover structure in the data that might otherwise have been missed. While McCullagh and Nelder's Generalized Linear Models shows how to extend the usual linear methodology to cover analysis of a range of data types, Generalized Additive Models enhances this methodology even further by incorporating the flexibility of nonparametric regression. Clear prose, exercises in each chapter, and case studies enhance this popular text.

장르
과학 및 자연
출시일
2017년
10월 19일
언어
EN
영어
길이
352
페이지
출판사
CRC Press
판매자
Taylor & Francis Group
크기
8.2
MB
Smoothing and Regression Smoothing and Regression
2013년
Functional Data Analysis Functional Data Analysis
2006년
The Art of Semiparametrics The Art of Semiparametrics
2006년
Regression Regression
2022년
Flexible Regression and Smoothing Flexible Regression and Smoothing
2017년
Handbook of Regression Methods Handbook of Regression Methods
2018년
Introduction to Time Series Modeling with Applications in R Introduction to Time Series Modeling with Applications in R
2020년
Markov Models & Optimization Markov Models & Optimization
2018년
Statistical Evidence Statistical Evidence
2017년
Statistical Inference Statistical Inference
2017년
Hierarchical Modeling and Analysis for Spatial Data Hierarchical Modeling and Analysis for Spatial Data
2025년
Robust Small Area Estimation Robust Small Area Estimation
2025년