Geometry and Spectra of Compact Riemann Surfaces Geometry and Spectra of Compact Riemann Surfaces
Modern Birkhäuser Classics

Geometry and Spectra of Compact Riemann Surfaces

    • 79,99 US$
    • 79,99 US$

Lời Giới Thiệu Của Nhà Xuất Bản

This classic monograph is a self-contained introduction to the geometry of Riemann surfaces of constant curvature –1 and their length and eigenvalue spectra. It focuses on two subjects: the geometric theory of compact Riemann surfaces of genus greater than one, and the relationship of the Laplace operator with the geometry of such surfaces. The first part of the book is written in textbook form at the graduate level, with only minimal requisites in either differential geometry or complex Riemann surface theory. The second part of the book is a self-contained introduction to the spectrum of the Laplacian based on the heat equation. Later chapters deal with recent developments on isospectrality, Sunada’s construction, a simplified proof of Wolpert’s theorem, and an estimate of the number of pairwise isospectral non-isometric examples which depends only on genus. Researchers and graduate students interested in compact Riemann surfaces will find this book a useful reference.  Anyone familiar with the author's hands-on approach to Riemann surfaces will be gratified by both the breadth and the depth of the topics considered here. The exposition is also extremely clear and thorough. Anyone not familiar with the author's approach is in for a real treat. — Mathematical Reviews This is a thick and leisurely book which will repay repeated study with many pleasant hours – both for the beginner and the expert. It is fortunately more or less self-contained, which makes it easy to read, and it leads one from essential mathematics to the “state of the art” in the theory of the Laplace–Beltrami operator on compact Riemann surfaces. Although it is not encyclopedic, it is so rich in information and ideas … the reader will be grateful for what has been included in this very satisfying book. —Bulletin of the AMS  The book is very well written and quite accessible; there is an excellent bibliography at the end. —Zentralblatt MATH

THỂ LOẠI
Khoa Học & Tự Nhiên
ĐÃ PHÁT HÀNH
2010
29 tháng 10
NGÔN NGỮ
EN
Tiếng Anh
ĐỘ DÀI
470
Trang
NHÀ XUẤT BẢN
Birkhäuser Boston
NGƯỜI BÁN
Springer Nature B.V.
KÍCH THƯỚC
12,1
Mb
Compact Riemann Surfaces Compact Riemann Surfaces
2006
An Introduction to Compactness Results in Symplectic Field Theory An Introduction to Compactness Results in Symplectic Field Theory
2014
Geometry of Algebraic Curves Geometry of Algebraic Curves
2011
Riemannian Geometry and Geometric Analysis Riemannian Geometry and Geometric Analysis
2008
A Comprehensive Introduction to Sub-Riemannian Geometry A Comprehensive Introduction to Sub-Riemannian Geometry
2019
Recent Advances in Hodge Theory Recent Advances in Hodge Theory
2016
Indiscrete Thoughts Indiscrete Thoughts
2009
Logic for Computer Scientists Logic for Computer Scientists
2009
Knot Theory and Its Applications Knot Theory and Its Applications
2009
Tata Lectures on Theta I Tata Lectures on Theta I
2007
The Heat Kernel Lefschetz Fixed Point Formula for the Spin-c Dirac Operator The Heat Kernel Lefschetz Fixed Point Formula for the Spin-c Dirac Operator
2011
Beyond the Quartic Equation Beyond the Quartic Equation
2009