Hands-On Deep Learning Architectures with Python Hands-On Deep Learning Architectures with Python

Hands-On Deep Learning Architectures with Python

Create deep neural networks to solve computational problems using TensorFlow and Keras

    • $20.99
    • $20.99

Publisher Description

Concepts, tools, and techniques to explore deep learning architectures and methodologies

Key Features
Explore advanced deep learning architectures using various datasets and frameworksImplement deep architectures for neural network models such as CNN, RNN, GAN, and many moreDiscover design patterns and different challenges for various deep learning architectures
Book Description

Deep learning architectures are composed of multilevel nonlinear operations that represent high-level abstractions; this allows you to learn useful feature representations from the data. This book will help you learn and implement deep learning architectures to resolve various deep learning research problems.

Hands-On Deep Learning Architectures with Python explains the essential learning algorithms used for deep and shallow architectures. Packed with practical implementations and ideas to help you build efficient artificial intelligence systems (AI), this book will help you learn how neural networks play a major role in building deep architectures. You will understand various deep learning architectures (such as AlexNet, VGG Net, GoogleNet) with easy-to-follow code and diagrams. In addition to this, the book will also guide you in building and training various deep architectures such as the Boltzmann mechanism, autoencoders, convolutional neural networks (CNNs), recurrent neural networks (RNNs), natural language processing (NLP), GAN, and more—all with practical implementations.

By the end of this book, you will be able to construct deep models using popular frameworks and datasets with the required design patterns for each architecture. You will be ready to explore the potential of deep architectures in today's world.

What you will learn
Implement CNNs, RNNs, and other commonly used architectures with PythonExplore architectures such as VGGNet, AlexNet, and GoogLeNetBuild deep learning architectures for AI applications such as face and image recognition, fraud detection, and many moreUnderstand the architectures and applications of Boltzmann machines and autoencoders with concrete examples Master artificial intelligence and neural network concepts and apply them to your architectureUnderstand deep learning architectures for mobile and embedded systems
Who this book is for

If you're a data scientist, machine learning developer/engineer, or deep learning practitioner, or are curious about AI and want to upgrade your knowledge of various deep learning architectures, this book will appeal to you. You are expected to have some knowledge of statistics and machine learning algorithms to get the best out of this book

GENRE
Computers & Internet
RELEASED
2019
April 30
LANGUAGE
EN
English
LENGTH
316
Pages
PUBLISHER
Packt Publishing
SELLER
Ingram DV LLC
SIZE
24.9
MB
Mastering TensorFlow 2.x: Implement Powerful Neural Nets across Structured, Unstructured datasets and Time Series Data (English Edition) Mastering TensorFlow 2.x: Implement Powerful Neural Nets across Structured, Unstructured datasets and Time Series Data (English Edition)
2022
Deep Learning Patterns and Practices Deep Learning Patterns and Practices
2021
Intelligent Projects Using Python Intelligent Projects Using Python
2019
Python Machine Learning Python Machine Learning
2020
Modern Deep Learning Design and Application Development Modern Deep Learning Design and Application Development
2021
Applied Neural Networks with TensorFlow 2 Applied Neural Networks with TensorFlow 2
2020
Machine Learning with PyTorch and Scikit-Learn Machine Learning with PyTorch and Scikit-Learn
2022
Python Machine Learning By Example Python Machine Learning By Example
2020
Deep Learning with R for Beginners Deep Learning with R for Beginners
2019
Python Machine Learning by Example Python Machine Learning by Example
2017
Python Machine Learning By Example Python Machine Learning By Example
2024
PyTorch 1.x Reinforcement Learning Cookbook PyTorch 1.x Reinforcement Learning Cookbook
2019