High-Dimensional Statistics High-Dimensional Statistics

High-Dimensional Statistics

A Non-Asymptotic Viewpoint

    • ‏82٫99 US$
    • ‏82٫99 US$

وصف الناشر

Recent years have witnessed an explosion in the volume and variety of data collected in all scientific disciplines and industrial settings. Such massive data sets present a number of challenges to researchers in statistics and machine learning. This book provides a self-contained introduction to the area of high-dimensional statistics, aimed at the first-year graduate level. It includes chapters that are focused on core methodology and theory - including tail bounds, concentration inequalities, uniform laws and empirical process, and random matrices - as well as chapters devoted to in-depth exploration of particular model classes - including sparse linear models, matrix models with rank constraints, graphical models, and various types of non-parametric models. With hundreds of worked examples and exercises, this text is intended both for courses and for self-study by graduate students and researchers in statistics, machine learning, and related fields who must understand, apply, and adapt modern statistical methods suited to large-scale data.

النوع
علم وطبيعة
تاريخ النشر
٢٠١٩
٢١ فبراير
اللغة
EN
الإنجليزية
عدد الصفحات
٨١١
الناشر
Cambridge University Press
البائع
Cambridge University Press
الحجم
٣٣٫٥
‫م.ب.‬
Stochastic Ordinary and Stochastic Partial Differential Equations Stochastic Ordinary and Stochastic Partial Differential Equations
٢٠٠٧
Soft Methods for Handling Variability and Imprecision Soft Methods for Handling Variability and Imprecision
٢٠٠٨
Ambit Stochastics Ambit Stochastics
٢٠١٨
Introduction to Mathematical Methods in Bioinformatics Introduction to Mathematical Methods in Bioinformatics
٢٠٠٦
High-Dimensional Optimization and Probability High-Dimensional Optimization and Probability
٢٠٢٢