Isomorphisms Between H¹ Spaces Isomorphisms Between H¹ Spaces

Isomorphisms Between H¹ Spaces

    • ‏109٫99 US$
    • ‏109٫99 US$

وصف الناشر

This book presents a thorough and self-contained presentation of H¹ and its known isomorphic invariants, such as the uniform approximation property, the dimension conjecture, and dichotomies for the complemented subspaces.
The necessary background is developed from scratch. This includes a detailed discussion of the Haar system, together with the operators that can be built from it (averaging projections, rearrangement operators, paraproducts, Calderon-Zygmund singular integrals). Complete proofs are given for the classical martingale inequalities of C. Fefferman, Burkholder, and Khinchine-Kahane, and for large deviation inequalities. Complex interpolation, analytic families of operators, and the Calderon product of Banach lattices are treated in the context of H^p spaces.
Througout the book, special attention is given to the combinatorial methods developed in the field, particularly J. Bourgain's proof of the dimension conjecture, L. Carleson's biorthogonal system in H¹, T. Figiel's integral representation, W.B. Johnson's factorization of operators, B. Maurey's isomorphism, and P. Jones' proof of the uniform approximation property. An entire chapter is devoted to the study of combinatorics of colored dyadic intervals.

النوع
علم وطبيعة
تاريخ النشر
٢٠٠٦
٣٠ مارس
اللغة
EN
الإنجليزية
عدد الصفحات
٤٧٢
الناشر
Birkhäuser Basel
البائع
Springer Nature B.V.
الحجم
١٤٫٧
‫م.ب.‬
Selected Works of Donald L. Burkholder Selected Works of Donald L. Burkholder
٢٠١١
Topics in Operator Theory Topics in Operator Theory
٢٠١١
Classical and Multilinear Harmonic Analysis: Volume II Classical and Multilinear Harmonic Analysis: Volume II
٢٠١٣
Partial Differential Equations and Functional Analysis Partial Differential Equations and Functional Analysis
٢٠٠٦
Analysis On Gaussian Spaces Analysis On Gaussian Spaces
٢٠١٦
Journal of Fourier Analysis and Applications Special Issue Journal of Fourier Analysis and Applications Special Issue
٢٠٢٠