Linear Algebra and Optimization with Applications to Machine Learning Linear Algebra and Optimization with Applications to Machine Learning

Linear Algebra and Optimization with Applications to Machine Learning

Volume I: Linear Algebra for Computer Vision, Robotics, and Machine Learning

    • ‏77٫99 US$
    • ‏77٫99 US$

وصف الناشر

This book provides the mathematical fundamentals of linear algebra to practicers in computer vision, machine learning, robotics, applied mathematics, and electrical engineering. By only assuming a knowledge of calculus, the authors develop, in a rigorous yet down to earth manner, the mathematical theory behind concepts such as: vectors spaces, bases, linear maps, duality, Hermitian spaces, the spectral theorems, SVD, and the primary decomposition theorem. At all times, pertinent real-world applications are provided. This book includes the mathematical explanations for the tools used which we believe that is adequate for computer scientists, engineers and mathematicians who really want to do serious research and make significant contributions in their respective fields.
Contents: IntroductionVector Spaces, Bases, Linear MapsMatrices and Linear MapsHaar Bases, Haar Wavelets, Hadamard MatricesDirect Sums, Rank-Nullity Theorem, Affine MapsDeterminantsGaussian Elimination, LU-Factorization, Cholesky Factorization, Reduced Row Echelon FormVector Norms and Matrix NormsIterative Methods for Solving Linear SystemsThe Dual Space and DualityEuclidean SpacesQR-Decomposition for Arbitrary MatricesHermitian SpacesEigenvectors and EigenvaluesUnit Quaternions and Rotations in SO(3)Spectral Theorems in Euclidean and Hermitian SpacesComputing Eigenvalues and EigenvectorsGraphs and Graph Laplacians; Basic FactsSpectral Graph DrawingSingular Value Decomposition and Polar FormApplications of SVD and Pseudo-InversesAnnihilating Polynomials and the Primary DecompositionBibliographyIndex
Readership: Undergraduate and graduate students interested in mathematical fundamentals of linear algebra in computer vision, machine learning, robotics, applied mathematics, and electrical engineering.Vectors;Basis;Linear Maps;Kernels;Affine Maps;Determinants;LU;Cholesky;Rref;Haar Wavelets;Curve Interpolation;Matrix Norms;Dual Space;Euclidean Spaces;Inner Product;QR-Decomposition;Hermitian Spaces;Orthogonal Group;Matrix Exponential;Quaternions;Eigenvalues;Adjoint;Spectral Graph Theorem;Graph Laplacian;SVD;Least Squares Problem;Pseudo-Inverse;PCA (Principal Component Analysis);Primary Decomposition Theorem0Key Features:This book fills a gap in the market in that it is a mathematically rigorous book which provides topical applications for the fields of machine learning, computer vision, and roboticsThis book covers, in more depth than usual, duality (Chapter 9), vector and matrix norms (Chapter 7), and the spectral theorems (Chapter 15)This book will contain classroom tested exercises Professor Gallier has successfully used throughout his many years of teaching CIS 515: Fundamentals of Linear Algebra and Optimization. These multi-faceted exercises contain both mathematical proofs and computer programming

النوع
الصحة والعقل والبدن
تاريخ النشر
٢٠٢٠
٢٢ يناير
اللغة
EN
الإنجليزية
عدد الصفحات
٨٢٤
الناشر
World Scientific Publishing Company
البائع
Ingram DV LLC
الحجم
١٧٫١
‫م.ب.‬
Linear Algebra and Its Applications Linear Algebra and Its Applications
٢٠٢٠
Linear Algebra Linear Algebra
٢٠١٢
Linear Algebra and Its Applications Linear Algebra and Its Applications
٢٠١٣
Special Matrices and Their Applications in Numerical Mathematics Special Matrices and Their Applications in Numerical Mathematics
٢٠١٣
An Introduction to the Theory of Linear Spaces An Introduction to the Theory of Linear Spaces
٢٠١٢
Linear Algebra and Matrix Theory Linear Algebra and Matrix Theory
٢٠١٣
Linear Algebra and Optimization with Applications to Machine Learning Linear Algebra and Optimization with Applications to Machine Learning
٢٠٢٠
Discrete Mathematics Discrete Mathematics
٢٠١١
Geometric Methods and Applications Geometric Methods and Applications
٢٠١١
A Guide to the Classification Theorem for Compact Surfaces A Guide to the Classification Theorem for Compact Surfaces
٢٠١٣
ASPECTS REPRESENT THEORY & NONCOMMUTATIVE HARMONIC ANALYSIS ASPECTS REPRESENT THEORY & NONCOMMUTATIVE HARMONIC ANALYSIS
٢٠٢٥
ASPECTS HARMONIC ANALYSIS ON LOCALLY COMPACT ABELIAN GROUPS ASPECTS HARMONIC ANALYSIS ON LOCALLY COMPACT ABELIAN GROUPS
٢٠٢٤