MapReduce Design Patterns MapReduce Design Patterns

MapReduce Design Patterns

Building Effective Algorithms and Analytics for Hadoop and Other Systems

    • ٥٫٠ - ١ تقييم
    • ‏39٫99 US$
    • ‏39٫99 US$

وصف الناشر

Until now, design patterns for the MapReduce framework have been scattered among various research papers, blogs, and books. This handy guide brings together a unique collection of valuable MapReduce patterns that will save you time and effort regardless of the domain, language, or development framework you’re using.

Each pattern is explained in context, with pitfalls and caveats clearly identified to help you avoid common design mistakes when modeling your big data architecture. This book also provides a complete overview of MapReduce that explains its origins and implementations, and why design patterns are so important. All code examples are written for Hadoop.
Summarization patterns: get a top-level view by summarizing and grouping dataFiltering patterns: view data subsets such as records generated from one userData organization patterns: reorganize data to work with other systems, or to make MapReduce analysis easierJoin patterns: analyze different datasets together to discover interesting relationshipsMetapatterns: piece together several patterns to solve multi-stage problems, or to perform several analytics in the same jobInput and output patterns: customize the way you use Hadoop to load or store data
"A clear exposition of MapReduce programs for common data processing patterns—this book is indespensible for anyone using Hadoop."

--Tom White, author of Hadoop: The Definitive Guide

النوع
كمبيوتر وإنترنت
تاريخ النشر
٢٠١٢
٢١ نوفمبر
اللغة
EN
الإنجليزية
عدد الصفحات
٢٥٠
الناشر
O'Reilly Media
البائع
O Reilly Media, Inc.
الحجم
٦٫٩
‫م.ب.‬
Pentaho Kettle Solutions Pentaho Kettle Solutions
٢٠١٠
HBase: The Definitive Guide HBase: The Definitive Guide
٢٠١١
T-SQL Querying T-SQL Querying
٢٠١٥
Hadoop Beginner's Guide Hadoop Beginner's Guide
٢٠١٣
Professional Microsoft SQL Server 2008 Programming Professional Microsoft SQL Server 2008 Programming
٢٠١٠
InfoSphere DataStage Parallel Framework Standard Practices InfoSphere DataStage Parallel Framework Standard Practices
٢٠١٠