Meta-heuristic and Evolutionary Algorithms for Engineering Optimization Meta-heuristic and Evolutionary Algorithms for Engineering Optimization
Wiley Series in Operations Research and Management Science

Meta-heuristic and Evolutionary Algorithms for Engineering Optimization

Omid Bozorg-Haddad and Others
    • $119.99
    • $119.99

Publisher Description

A detailed review of a wide range of meta-heuristic and evolutionary algorithms in a systematic manner and how they relate to engineering optimization problems

This book introduces the main metaheuristic algorithms and their applications in optimization. It describes 20 leading meta-heuristic and evolutionary algorithms and presents discussions and assessments of their performance in solving optimization problems from several fields of engineering. The book features clear and concise principles and presents detailed descriptions of leading methods such as the pattern search (PS) algorithm, the genetic algorithm (GA), the simulated annealing (SA) algorithm, the Tabu search (TS) algorithm, the ant colony optimization (ACO), and the particle swarm optimization (PSO) technique.

Chapter 1 of Meta-heuristic and Evolutionary Algorithms for Engineering Optimization provides an overview of optimization and defines it by presenting examples of optimization problems in different engineering domains. Chapter 2 presents an introduction to meta-heuristic and evolutionary algorithms and links them to engineering problems. Chapters 3 to 22 are each devoted to a separate algorithm— and they each start with a brief literature review of the development of the algorithm, and its applications to engineering problems. The principles, steps, and execution of the algorithms are described in detail, and a pseudo code of the algorithm is presented, which serves as a guideline for coding the algorithm to solve specific applications. This book:
Introduces state-of-the-art metaheuristic algorithms and their applications to engineering optimization; Fills a gap in the current literature by compiling and explaining the various meta-heuristic and evolutionary algorithms in a clear and systematic manner; Provides a step-by-step presentation of each algorithm and guidelines for practical implementation and coding of algorithms; Discusses and assesses the performance of metaheuristic algorithms in multiple problems from many fields of engineering; Relates optimization algorithms to engineering problems employing a unifying approach.
Meta-heuristic and Evolutionary Algorithms for Engineering Optimization is a reference intended for students, engineers, researchers, and instructors in the fields of industrial engineering, operations research, optimization/mathematics, engineering optimization, and computer science.

OMID BOZORG-HADDAD, PhD, is Professor in the Department of Irrigation and Reclamation Engineering at the University of Tehran, Iran.

MOHAMMAD SOLGI, M.Sc., is Teacher Assistant for M.Sc. courses at the University of Tehran, Iran.

HUGO A. LOÁICIGA, PhD, is Professor in the Department of Geography at the University of California, Santa Barbara, United States of America.

GENRE
Science & Nature
RELEASED
2017
September 5
LANGUAGE
EN
English
LENGTH
304
Pages
PUBLISHER
Wiley
SELLER
John Wiley & Sons, Inc.
SIZE
8.5
MB
Issues in the Use of Neural Networks in Information Retrieval Issues in the Use of Neural Networks in Information Retrieval
2009
Computational Intelligence in Expensive Optimization Problems Computational Intelligence in Expensive Optimization Problems
2010
Decision Making: Uncertainty, Imperfection, Deliberation and Scalability Decision Making: Uncertainty, Imperfection, Deliberation and Scalability
2007
Adaptive Representations for Reinforcement Learning Adaptive Representations for Reinforcement Learning
2008
Artificial Neural Networks in Vehicular Pollution Modelling Artificial Neural Networks in Vehicular Pollution Modelling
2009
Metaheuristics Metaheuristics
2007
Computational Intelligence for Water and Environmental Sciences Computational Intelligence for Water and Environmental Sciences
2022
Climate Change in Sustainable Water Resources Management Climate Change in Sustainable Water Resources Management
2022
Essential Tools for Water Resources Analysis, Planning, and Management Essential Tools for Water Resources Analysis, Planning, and Management
2021
Economical, Political, and Social Issues in Water Resources Economical, Political, and Social Issues in Water Resources
2021
Advanced Optimization by Nature-Inspired Algorithms Advanced Optimization by Nature-Inspired Algorithms
2017
Handbook of Decision Analysis Handbook of Decision Analysis
2025
Cost Estimation Cost Estimation
2015
Game Theory Game Theory
2013
Introduction to Logistics Systems Management Introduction to Logistics Systems Management
2013
Airline Network Planning and Scheduling Airline Network Planning and Scheduling
2018
The Handbook of Behavioral Operations The Handbook of Behavioral Operations
2018