Multi-Label Dimensionality Reduction Multi-Label Dimensionality Reduction
Chapman & Hall/CRC Machine Learning & Pattern Recognition

Multi-Label Dimensionality Reduction

Liang Sun y otros
    • $69.99
    • $69.99

Descripción editorial

Similar to other data mining and machine learning tasks, multi-label learning suffers from dimensionality. An effective way to mitigate this problem is through dimensionality reduction, which extracts a small number of features by removing irrelevant, redundant, and noisy information. The data mining and machine learning literature currently lacks

GÉNERO
Negocios y finanzas personales
PUBLICADO
2016
19 de abril
IDIOMA
EN
Inglés
EXTENSIÓN
208
Páginas
EDITORIAL
CRC Press
VENDEDOR
Taylor & Francis Group
TAMAÑO
4.6
MB
A First Course in Machine Learning A First Course in Machine Learning
2016
Transformers for Machine Learning Transformers for Machine Learning
2022
Machine Learning Machine Learning
2014
The Pragmatic Programmer for Machine Learning The Pragmatic Programmer for Machine Learning
2023
Artificial Intelligence and Causal Inference Artificial Intelligence and Causal Inference
2022
Data Science and Machine Learning Data Science and Machine Learning
2025