Multi-Label Dimensionality Reduction Multi-Label Dimensionality Reduction
Chapman & Hall/CRC Machine Learning & Pattern Recognition

Multi-Label Dimensionality Reduction

Liang Sun 및 다른 저자
    • US$69.99
    • US$69.99

출판사 설명

Similar to other data mining and machine learning tasks, multi-label learning suffers from dimensionality. An effective way to mitigate this problem is through dimensionality reduction, which extracts a small number of features by removing irrelevant, redundant, and noisy information. The data mining and machine learning literature currently lacks

장르
비즈니스 및 개인 금융
출시일
2016년
4월 19일
언어
EN
영어
길이
208
페이지
출판사
CRC Press
판매자
Taylor & Francis Group
크기
4.6
MB
A First Course in Machine Learning A First Course in Machine Learning
2016년
Transformers for Machine Learning Transformers for Machine Learning
2022년
Machine Learning Machine Learning
2014년
The Pragmatic Programmer for Machine Learning The Pragmatic Programmer for Machine Learning
2023년
Artificial Intelligence and Causal Inference Artificial Intelligence and Causal Inference
2022년
Data Science and Machine Learning Data Science and Machine Learning
2025년