Nonlinear Filtering and Smoothing Nonlinear Filtering and Smoothing

Nonlinear Filtering and Smoothing

An Introduction to Martingales, Stochastic Integrals and Estimation

    • $15.99
    • $15.99

Publisher Description

Most useful for graduate students in engineering and finance who have a basic knowledge of probability theory, this volume is designed to give a concise understanding of martingales, stochastic integrals, and estimation. It emphasizes applications. Many theorems feature heuristic proofs; others include rigorous proofs to reinforce physical understanding. Numerous end-of-chapter problems enhance the book's practical value.


After introducing the basic measure-theoretic concepts of probability and stochastic processes, the text examines martingales, square integrable martingales, and stopping times. Considerations of white noise and white-noise integrals are followed by examinations of stochastic integrals and stochastic differential equations, as well as the associated Ito calculus and its extensions. After defining the Stratonovich integral, the text derives the correction terms needed for computational purposes to convert the Ito stochastic differential equation to the Stratonovich form. Additional chapters contain the derivation of the optimal nonlinear filtering representation, discuss how the Kalman filter stands as a special case of the general nonlinear filtering representation, apply the nonlinear filtering representations to a class of fault-detection problems, and discuss several optimal smoothing representations.

GENRE
Science & Nature
RELEASED
2013
September 19
LANGUAGE
EN
English
LENGTH
336
Pages
PUBLISHER
Dover Publications
SELLER
INscribe Digital
SIZE
25.1
MB
An Introduction to Continuous-Time Stochastic Processes An Introduction to Continuous-Time Stochastic Processes
2008
Theory and Statistical Applications of Stochastic Processes Theory and Statistical Applications of Stochastic Processes
2017
Change of Time and Change of Measure Change of Time and Change of Measure
2015
Point Process Theory and Applications Point Process Theory and Applications
2006
Matrix-Exponential Distributions in Applied Probability Matrix-Exponential Distributions in Applied Probability
2017
Stochastic Differential Equations Stochastic Differential Equations
2011
Linear Systems Properties Linear Systems Properties
2021
Probability and Random Processes Probability and Random Processes
2015