Photoemission from Optoelectronic Materials and their Nanostructures
-
- $169.99
-
- $169.99
Publisher Description
Photoemission from Optoelectronic Materials and Their Nanostructures is the first monograph to investigate the photoemission from low-dimensional nonlinear optical, III-V, II-VI, GaP, Ge, PtSb2, zero-gap, stressed, bismuth, carbon nanotubes, GaSb, IV-VI, Pb1-xGexTe, graphite, Te, II-V, ZnP2, CdP2 , Bi2Te3, Sb, and IV-VI materials. The investigation leads to a discussion of III-V, II-VI, IV-VI and HgTe/CdTe quantum confined superlattices, and superlattices of optoelectronic materials. Photo-excitation changes the band structure of optoelectronic compounds in fundamental ways, which has been incorporated into the analysis of photoemission from macro- and micro-structures of these materials on the basis of newly formulated electron dispersion laws that control the studies of quantum effect devices in the presence of light. The importance of the measurement of band gap in optoelectronic materials in the presence of external photo-excitation has been discussed from this perspective. This monograph contains 125 open-ended research problems which form an integral part of the text and are useful for graduate courses on modern optoelectronics in addition to aspiring Ph.D.’s and researchers in the fields of materials science, computational and theoretical nano-science and -technology, semiconductor optoelectronics, quantized-structures, semiconductor physics and condensed matter physics.