Polynomial Convexity Polynomial Convexity
Progress in Mathematics

Polynomial Convexity

    • $129.99
    • $129.99

Publisher Description

This comprehensive monograph is devoted to the study of polynomially convex sets, which play an important role in the theory of functions of several complex variables.

Important features of Polynomial Convexity:

*Presents the general properties of polynomially convex sets with particular attention to the theory of the hulls of one-dimensional sets.

*Motivates the theory with numerous examples and counterexamples, which serve to illustrate the general theory and to delineate its boundaries.

*Examines in considerable detail questions of uniform approximation, especially on totally real sets, for the most part on compact sets but with some attention to questions of global approximation on noncompact sets.

*Discusses important applications, e.g., to the study of analytic varieties and to the theory of removable singularities for CR functions.

*Requires of the reader a solid background in real and complex analysis together with some previous experience with the theory of functions of several complex variables as well as the elements of functional analysis.

This beautiful exposition of a rich and complex theory, which contains much material not available in other texts, is destined to be the standard reference for many years, and will appeal to all those with an interest in multivariate complex analysis.

GENRE
Science & Nature
RELEASED
2007
July 28
LANGUAGE
EN
English
LENGTH
449
Pages
PUBLISHER
Birkhäuser Boston
SELLER
Springer Nature B.V.
SIZE
19.6
MB
Differential Geometry and Analysis on CR Manifolds Differential Geometry and Analysis on CR Manifolds
2007
Singular Integral Operators, Quantitative Flatness, and Boundary Problems Singular Integral Operators, Quantitative Flatness, and Boundary Problems
2022
Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification
2022
Representation Theory, Mathematical Physics, and Integrable Systems Representation Theory, Mathematical Physics, and Integrable Systems
2022
Cubic Forms and the Circle Method Cubic Forms and the Circle Method
2021
Representation Theory, Number Theory, and Invariant Theory Representation Theory, Number Theory, and Invariant Theory
2017