Probabilistic Reasoning in Intelligent Systems Probabilistic Reasoning in Intelligent Systems

Probabilistic Reasoning in Intelligent Systems

Networks of Plausible Inference

    • US$72.99
    • US$72.99

출판사 설명

Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition--in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information.

Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.

장르
컴퓨터 및 인터넷
출시일
2014년
6월 28일
언어
EN
영어
길이
552
페이지
출판사
Morgan Kaufmann
판매자
Elsevier Ltd.
크기
18.2
MB
Probabilistic Graphical Models Probabilistic Graphical Models
2009년
Understanding Machine Learning Understanding Machine Learning
2014년
Machine Learning Machine Learning
2012년
Bayesian Methods for Hackers Bayesian Methods for Hackers
2015년
Introduction to Machine Learning, fourth edition Introduction to Machine Learning, fourth edition
2020년
An Introduction to Machine Learning An Introduction to Machine Learning
2015년
The Book of Why The Book of Why
2018년
Causal Inference in Statistics Causal Inference in Statistics
2016년
I Am Jewish I Am Jewish
2011년
I am Jewish I am Jewish
2004년