Real-World Machine Learning Real-World Machine Learning

Real-World Machine Learning

Henrik Brink 및 다른 저자
    • US$38.99

출판사 설명

Summary

Real-World Machine Learning is a practical guide designed to teach working developers the art of ML project execution. Without overdosing you on academic theory and complex mathematics, it introduces the day-to-day practice of machine learning, preparing you to successfully build and deploy powerful ML systems.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the Technology

Machine learning systems help you find valuable insights and patterns in data, which you'd never recognize with traditional methods. In the real world, ML techniques give you a way to identify trends, forecast behavior, and make fact-based recommendations. It's a hot and growing field, and up-to-speed ML developers are in demand.

About the Book

Real-World Machine Learning will teach you the concepts and techniques you need to be a successful machine learning practitioner without overdosing you on abstract theory and complex mathematics. By working through immediately relevant examples in Python, you'll build skills in data acquisition and modeling, classification, and regression. You'll also explore the most important tasks like model validation, optimization, scalability, and real-time streaming. When you're done, you'll be ready to successfully build, deploy, and maintain your own powerful ML systems.

What's Inside

• Predicting future behavior
• Performance evaluation and optimization
• Analyzing sentiment and making recommendations

About the Reader

No prior machine learning experience assumed. Readers should know Python.

About the Authors

Henrik Brink, Joseph Richards and Mark Fetherolf are experienced data scientists engaged in the daily practice of machine learning.

Table of Contents

PART 1: THE MACHINE-LEARNING WORKFLOW
• What is machine learning?
• Real-world data
• Modeling and prediction
• Model evaluation and optimization
• Basic feature engineering

PART 2: PRACTICAL APPLICATION
• Example: NYC taxi data
• Advanced feature engineering
• Advanced NLP example: movie review sentiment
• Scaling machine-learning workflows
• Example: digital display advertising

 

 

장르
컴퓨터 및 인터넷
출시일
2016년
9월 15일
언어
EN
영어
길이
264
페이지
출판사
Manning
판매자
Simon & Schuster Digital Sales LLC
크기
10.2
MB
ML.NET Revealed ML.NET Revealed
2020년
Supervised Learning with Python Supervised Learning with Python
2020년
Machine Learning Using R Machine Learning Using R
2018년
Machine Learning with PySpark Machine Learning with PySpark
2021년
The Data Science Workshop The Data Science Workshop
2020년
Interpretable AI Interpretable AI
2022년