Regression Methods in Biostatistics Regression Methods in Biostatistics

Regression Methods in Biostatistics

Linear, Logistic, Survival, and Repeated Measures Models

Eric Vittinghoff and Others
    • 2.0 • 1 Rating
    • $84.99
    • $84.99

Publisher Description

This new edition provides a unified, in-depth, readable introduction to the multipredictor regression methods most widely used in biostatistics: linear models for continuous outcomes, logistic models for binary outcomes, the Cox model for right-censored survival times, repeated-measures models for longitudinal and hierarchical outcomes, and generalized linear models for counts and other outcomes.

Treating these topics together takes advantage of all they have in common. The authors point out the many-shared elements in the methods they present for selecting, estimating, checking, and interpreting each of these models. They also show that these regression methods deal with confounding, mediation, and interaction of causal effects in essentially the same way.

The examples, analyzed using Stata, are drawn from the biomedical context but generalize to other areas of application. While a first course in statistics is assumed, a chapter reviewing basic statistical methods is included. Some advanced topics are covered but the presentation remains intuitive. A brief introduction to regression analysis of complex surveys and notes for further reading are provided. For many students and researchers learning to use these methods, this one book may be all they need to conduct and interpret multipredictor regression analyses.

In the second edition, the authors have substantially expanded the core chapters, including new coverage of exact, ordinal, and multinomial logistic models, discrete time and competing risks survival models, within and between effects in longitudinal models, zero-inflated Poisson and negative binomial models, cross-validation for prediction model selection, directed acyclic graphs, and sample size, power and minimum detectable effect calculations; Stata code is also updated. In addition, there are new chapters on methods for strengthening causal inference, including propensity scores, marginal structural models, and instrumental variables, and on methods for handling missing data, using maximum likelihood, multiple imputation, inverse weighting, and pattern mixture models.
From the reviews of the first edition:
"This book provides a unified introduction to the regression methods listed in the title...The methods are well illustrated by data drawn from medical studies...A real strength of this book is the careful discussion of issues common to all of the multipredictor methods covered."

Journal of Biopharmaceutical Statistics, 2005

"This book is not just for biostatisticians. It is, in fact, a very good, and relatively nonmathematical, overview of multipredictor regression models. Although the examples are biologically oriented, they are generally easy to understand and follow...I heartily recommend the book"

Technometrics, February 2006

"Overall, the text provides an overview of regression methods that is particularly strong in its breadth of coverage and emphasis on insight in place of mathematical detail. As intended, this well-unified approach should appeal to students who learn conceptually and verbally."

Journal of the American Statistical Association, March 2006

GENRE
Professional & Technical
RELEASED
2012
March 6
LANGUAGE
EN
English
LENGTH
529
Pages
PUBLISHER
Springer New York
SELLER
Springer Nature B.V.
SIZE
6.9
MB

Customer Reviews

Soccerman ,

Poor formatting of math equations

You would think a book with a lot of math equations would get this right for an eBook like this, but there are several places where the formatting of equations is buggy with markup language sporadically inserted into the equations. Also cheaper via Kindle where I can read online and on PC. Either buy the hard copy for the same price or save a few bucks and get the more flexible Kindle edition.

Applied Logistic Regression Applied Logistic Regression
2013
Applications of Regression Models in Epidemiology Applications of Regression Models in Epidemiology
2017
Applied Longitudinal Analysis Applied Longitudinal Analysis
2012
Applied Survival Analysis Applied Survival Analysis
2011
Regression Models for Categorical, Count, and Related Variables Regression Models for Categorical, Count, and Related Variables
2016
Advanced Statistics in Criminology and Criminal Justice Advanced Statistics in Criminology and Criminal Justice
2021