Semiparametric Theory and Missing Data Semiparametric Theory and Missing Data
Springer Series in Statistics

Semiparametric Theory and Missing Data

    • $149.99
    • $149.99

Publisher Description

Missing data arise in almost all scientific disciplines. In many cases, the treatment of missing data in an analysis is carried out in a casual and ad-hoc manner, leading, in many cases, to invalid inference and erroneous conclusions. In the past 20 years or so, there has been a serious attempt to understand the underlying issues and difficulties that come about from missing data and their impact on subsequent analysis. There has been a great deal written on the theory developed for analyzing missing data for finite-dimensional parametric models. This includes an extensive literature on likelihood-based methods and multiple imputation. More recently, there has been increasing interest in semiparametric models which, roughly speaking, are models that include both a parametric and nonparametric component. Such models are popular because estimators in such models are more robust than in traditional parametric models. The theory of missing data applied to semiparametric models is scattered throughout the literature with no thorough comprehensive treatment of the subject.


This book combines much of what is known in regard to the theory of estimation for semiparametric models with missing data in an organized and comprehensive manner. It starts with the study of semiparametric methods when there are no missing data. The description of the theory of estimation for semiparametric models is at a level that is both rigorous and intuitive, relying on geometric ideas to reinforce the intuition and understanding of the theory. These methods are then applied to problems with missing, censored, and coarsened data with the goal of deriving estimators that are as robust and efficient as possible.


Anastasios A. Tsiatis is the Drexel Professor of Statistics at North Carolina State University. His research has focused on developing statistical methods for the design and analysis of clinical trials, censored survival analysis, group sequential methods, surrogate markers, semiparametric methods with missing and censored data and causal inference and has been the major Ph.D. advisor for more than 30 students working in these areas. He is a Fellow of the American Statistical Association and the Institute of Mathematical Statistics. He is the recipient of the Spiegelman Award and the Snedecor Award. He has been an Associate Editor of the Annals of Statistics and Statistics and Probability Letters and is currently an Associate Editor for Biometrika.

GENRE
Science & Nature
RELEASED
2007
January 15
LANGUAGE
EN
English
LENGTH
404
Pages
PUBLISHER
Springer New York
SELLER
Springer Nature B.V.
SIZE
25.4
MB
Statistical Inference Based on the likelihood Statistical Inference Based on the likelihood
2017
Asymptotic Analysis of Mixed Effects Models Asymptotic Analysis of Mixed Effects Models
2017
Regression Regression
2022
Advanced Linear Modeling Advanced Linear Modeling
2019
Linear Models and Regression with R Linear Models and Regression with R
2019
Generalized Linear Models Generalized Linear Models
2019
Hidden Markov Processes and Adaptive Filtering Hidden Markov Processes and Adaptive Filtering
2025
Robust Statistics Through the Monitoring Approach Robust Statistics Through the Monitoring Approach
2025
Change Point Analysis for Time Series Change Point Analysis for Time Series
2024
Ten Projects in Applied Statistics Ten Projects in Applied Statistics
2023
Statistical Foundations, Reasoning and Inference Statistical Foundations, Reasoning and Inference
2021
Linear and Generalized Linear Mixed Models and Their Applications Linear and Generalized Linear Mixed Models and Their Applications
2021