Singular Perturbations and Boundary Layers Singular Perturbations and Boundary Layers
Applied Mathematical Sciences

Singular Perturbations and Boundary Layers

Gung-Min Gie and Others
    • $129.99
    • $129.99

Publisher Description

Singular perturbations occur when a small coefficient affects the highest order derivatives in a system of partial differential equations. From the physical point of view singular perturbations generate in the system under consideration thin layers located often but not always at the boundary of the domains that are called boundary layers or internal layers if the layer is located inside the domain. Important physical phenomena occur in boundary layers. The most common boundary layers appear in fluid mechanics, e.g., the flow of air around an airfoil or a whole airplane, or the flow of air around a car. Also in many instances in geophysical fluid mechanics, like the interface of air and earth, or air and ocean. This self-contained monograph is devoted to the study of certain classes of singular perturbation problems mostly related to thermic, fluid mechanics and optics and where mostly elliptic or parabolic equations in a bounded domain are considered.

This book is a fairly unique resource regarding the rigorous mathematical treatment of boundary layer problems.  The explicit methodology developed in this book extends in many different directions the concept of correctors initially introduced  by J. L. Lions, and in particular the lower- and higher-order error estimates of asymptotic expansions are obtained in the setting of functional analysis. The review of differential geometry and treatment of boundary layers in a curved domain is an additional strength of this book. In the context of fluid mechanics, the outstanding open problem of the vanishing viscosity limit of the Navier-Stokes equations is investigated in this book and solved for a number of particular, but physically relevant cases.

This book will serve as a unique resource for those studying singular perturbations and boundary layer problems at the advanced graduate level in mathematics or applied mathematics and may be useful for practitioners in other related fields inscience and engineering such as aerodynamics, fluid mechanics, geophysical fluid mechanics,  acoustics and optics.

GENRE
Science & Nature
RELEASED
2018
November 21
LANGUAGE
EN
English
LENGTH
430
Pages
PUBLISHER
Springer International Publishing
SELLER
Springer Nature B.V.
SIZE
21.4
MB
Equations of Motion for Incompressible Viscous Fluids Equations of Motion for Incompressible Viscous Fluids
2021
Current Trends in Mathematical Analysis and Its Interdisciplinary Applications Current Trends in Mathematical Analysis and Its Interdisciplinary Applications
2019
Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations
2019
Handbook of Mathematical Fluid Dynamics Handbook of Mathematical Fluid Dynamics
2004
Contemporary Research in Elliptic PDEs and Related Topics Contemporary Research in Elliptic PDEs and Related Topics
2019
Anomalies in Partial Differential Equations Anomalies in Partial Differential Equations
2021
Information Geometry and Its Applications Information Geometry and Its Applications
2016
Topology, Geometry and Gauge fields Topology, Geometry and Gauge fields
2011
Introduction to Hamiltonian Dynamical Systems and the N-Body Problem Introduction to Hamiltonian Dynamical Systems and the N-Body Problem
2017
The Parameterization Method for Invariant Manifolds The Parameterization Method for Invariant Manifolds
2016
Dynamical Systems and Chaos Dynamical Systems and Chaos
2010
Prandtl-Essentials of Fluid Mechanics Prandtl-Essentials of Fluid Mechanics
2010