Singular Spectrum Analysis with R Singular Spectrum Analysis with R
Use R

Singular Spectrum Analysis with R

Nina Golyandina 및 다른 저자
    • US$69.99
    • US$69.99

출판사 설명

This comprehensive and richly illustrated volume provides up-to-date material on Singular Spectrum Analysis (SSA).  SSA is a well-known methodology for the analysis and forecasting of time series. Since quite recently, SSA is also being used to analyze digital images and other objects that are not necessarily of planar or rectangular form and may contain gaps. SSA is multi-purpose and naturally combines both model-free and parametric techniques, which makes it a very special and attractive methodology for solving a wide range of problems arising in diverse areas, most notably those associated with time series and digital images. An effective, comfortable and accessible implementation of SSA is provided by the R-package Rssa, which is available from CRAN and reviewed in this book.

Written by prominent statisticians who have extensive experience with SSA, the book (a) presents the up-to-date SSA methodology, including multidimensional extensions, in language accessible to a large circle of users, (b) combines different versions of SSA into a single tool, (c) shows the diverse tasks that SSA can be used for, (d) formally describes the main SSA methods and algorithms, and (e) provides tutorials on the Rssa package and the use of SSA.

The book offers a valuable resource for a very wide readership, including professional statisticians, specialists in signal and image processing, as well as specialists in numerous applied disciplines interested in using statistical methods for time series analysis, forecasting, signal and image processing. The book is written on a level accessible to a broad audience and includes a wealth of examples; hence it can also be used as a textbook for undergraduate and postgraduate courses on time series analysis and signal processing.

장르
과학 및 자연
출시일
2018년
6월 14일
언어
EN
영어
길이
285
페이지
출판사
Springer Berlin Heidelberg
판매자
Springer Nature B.V.
크기
42.9
MB
Research in Data Science Research in Data Science
2019년
Elementary Cluster Analysis Elementary Cluster Analysis
2022년
A Guide to Empirical Orthogonal Functions for Climate Data Analysis A Guide to Empirical Orthogonal Functions for Climate Data Analysis
2010년
COMPSTAT 2006 - Proceedings in Computational Statistics COMPSTAT 2006 - Proceedings in Computational Statistics
2007년
Data Analysis Data Analysis
2013년
Coding and Decoding: Seismic Data Coding and Decoding: Seismic Data
2017년
Singular Spectrum Analysis for Time Series Singular Spectrum Analysis for Time Series
2013년
Singular Spectrum Analysis for Time Series Singular Spectrum Analysis for Time Series
2020년
ggplot2 ggplot2
2016년
Data Mining with Rattle and R Data Mining with Rattle and R
2011년
Data Manipulation with R Data Manipulation with R
2008년
Introductory Time Series with R Introductory Time Series with R
2009년
Business Analytics for Managers Business Analytics for Managers
2011년
A Beginner's Guide to R A Beginner's Guide to R
2009년