Stable Klingen Vectors and Paramodular Newforms Stable Klingen Vectors and Paramodular Newforms
Lecture Notes in Mathematics

Stable Klingen Vectors and Paramodular Newforms

Jennifer Johnson-Leung 및 다른 저자
    • US$54.99
    • US$54.99

출판사 설명

This book describes a novel approach to the study of Siegel modular forms of degree two with paramodular level. It introduces the family of stable Klingen congruence subgroups of GSp(4) and uses this family to obtain new relations between the Hecke eigenvalues and Fourier coefficients of paramodular newforms, revealing a fundamental dichotomy for paramodular representations. Among other important results, it includes a complete description of the vectors fixed by these congruence subgroups in all irreducible representations of GSp(4) over a nonarchimedean local field.
Siegel paramodular forms have connections with the theory of automorphic representations and the Langlands program, Galois representations, the arithmetic of abelian surfaces, and algorithmic number theory. Providing a useful standard source on the subject, the book will be of interest to graduate students and researchers working in the above fields.

장르
과학 및 자연
출시일
2023년
12월 27일
언어
EN
영어
길이
379
페이지
출판사
Springer Nature Switzerland
판매자
Springer Nature B.V.
크기
64.2
MB
Planar Maps, Random Walks and Circle Packing Planar Maps, Random Walks and Circle Packing
2019년
Mathematical Epidemiology Mathematical Epidemiology
2008년
Introduction to ℓ²-invariants Introduction to ℓ²-invariants
2019년
Hopf Algebras and Their Generalizations from a Category Theoretical Point of View Hopf Algebras and Their Generalizations from a Category Theoretical Point of View
2018년
Ramanujan Summation of Divergent Series Ramanujan Summation of Divergent Series
2017년
Large Deviations for Random Graphs Large Deviations for Random Graphs
2017년