Statistical Modeling Using Local Gaussian Approximation Statistical Modeling Using Local Gaussian Approximation

Statistical Modeling Using Local Gaussian Approximation

Dag Tjostheim 및 다른 저자
    • US$129.99
    • US$129.99

출판사 설명

Statistical Modeling using Local Gaussian Approximation extends powerful characteristics of the Gaussian distribution, perhaps, the most well-known and most used distribution in statistics, to a large class of non-Gaussian and nonlinear situations through local approximation. This extension enables the reader to follow new methods in assessing dependence and conditional dependence, in estimating probability and spectral density functions, and in discrimination. Chapters in this release cover Parametric, nonparametric, locally parametric, Dependence, Local Gaussian correlation and dependence, Local Gaussian correlation and the copula, Applications in finance, and more.

Additional chapters explores Measuring dependence and testing for independence, Time series dependence and spectral analysis, Multivariate density estimation, Conditional density estimation, The local Gaussian partial correlation, Regression and conditional regression quantiles, and a A local Gaussian Fisher discriminant.



- Reviews local dependence modeling with applications to time series and finance markets

- Introduces new techniques for density estimation, conditional density estimation, and tests of conditional independence with applications in economics

- Evaluates local spectral analysis, discovering hidden frequencies in extremes and hidden phase differences

- Integrates textual content with three useful R packages

장르
비즈니스 및 개인 금융
출시일
2021년
10월 5일
언어
EN
영어
길이
458
페이지
출판사
Academic Press
판매자
Elsevier Ltd.
크기
67.8
MB
Handbook of Econometrics Handbook of Econometrics
2020년
Flexible Bayesian Regression Modelling Flexible Bayesian Regression Modelling
2019년
Dynamic Models for Volatility and Heavy Tails Dynamic Models for Volatility and Heavy Tails
2013년
Analysis of Panel Data Analysis of Panel Data
2022년
Panel Data Econometrics Panel Data Econometrics
2019년
Quantile Regression Quantile Regression
2005년