The Azure Data Lakehouse Toolkit The Azure Data Lakehouse Toolkit

The Azure Data Lakehouse Toolkit

Building and Scaling Data Lakehouses on Azure with Delta Lake, Apache Spark, Databricks, Synapse Analytics, and Snowflake

    • ‏49٫99 US$
    • ‏49٫99 US$

وصف الناشر

Design and implement a modern data lakehouse on the Azure Data Platform using Delta Lake, Apache Spark, Azure Databricks, Azure Synapse Analytics, and Snowflake. This book teaches you the intricate details of the Data Lakehouse Paradigm and how to efficiently design a cloud-based data lakehouse using highly performant and cutting-edge Apache Spark capabilities using Azure Databricks, Azure Synapse Analytics, and Snowflake. You will learn to write efficient PySpark code for batch and streaming ELT jobs on Azure. And you will follow along with practical, scenario-based examples showing how to apply the capabilities of Delta Lake and Apache Spark to optimize performance, and secure, share, and manage a high volume, high velocity, and high variety of data in your lakehouse with ease.
The patterns of success that you acquire from reading this book will help you hone your skills to build high-performing and scalable ACID-compliant lakehouses using flexible and cost-efficient decoupledstorage and compute capabilities. Extensive coverage of Delta Lake ensures that you are aware of and can benefit from all that this new, open source storage layer can offer. In addition to the deep examples on Databricks in the book, there is coverage of alternative platforms such as Synapse Analytics and Snowflake so that you can make the right platform choice for your needs.

After reading this book, you will be able to implement Delta Lake capabilities, including Schema Evolution, Change Feed, Live Tables, Sharing, and Clones to enable better business intelligence and advanced analytics on your data within the Azure Data Platform.

What You Will LearnImplement the Data Lakehouse Paradigm on Microsoft’s Azure cloud platformBenefit from the new Delta Lake open-source storage layer for data lakehouses Take advantage of schema evolution, change feeds, live tables, and moreWrite functional PySparkcode for data lakehouse ELT jobsOptimize Apache Spark performance through partitioning, indexing, and other tuning optionsChoose between alternatives such as Databricks, Synapse Analytics, and Snowflake

النوع
كمبيوتر وإنترنت
تاريخ النشر
٢٠٢٢
١٣ يوليو
اللغة
EN
الإنجليزية
عدد الصفحات
٤٨٧
الناشر
Apress
البائع
Springer Nature B.V.
الحجم
٣٧٫٩
‫م.ب.‬
Business Intelligence with Databricks SQL Business Intelligence with Databricks SQL
٢٠٢٢
Processing Big Data with Azure HDInsight Processing Big Data with Azure HDInsight
٢٠١٧
InfoSphere Warehouse: A Robust Infrastructure for Business Intelligence InfoSphere Warehouse: A Robust Infrastructure for Business Intelligence
٢٠١٠
Modern Big Data Processing with Hadoop Modern Big Data Processing with Hadoop
٢٠١٨
Understanding Azure Data Factory Understanding Azure Data Factory
٢٠١٨
Solving Operational Business Intelligence with InfoSphere Warehouse Advanced Edition Solving Operational Business Intelligence with InfoSphere Warehouse Advanced Edition
٢٠١٢