The Fast Solution of Boundary Integral Equations The Fast Solution of Boundary Integral Equations
    • $149.99

Publisher Description

The use of surface potentials to describe solutions of partial differential equations goes back to the middle of the 19th century. Numerical approximation procedures, known today as Boundary Element Methods (BEM), have been developed in the physics and engineering community since the 1950s. These methods turn out to be powerful tools for numerical studies of various physical phenomena which can be described mathematically by partial differential equations.

The Fast Solution of Boundary Integral Equations provides a detailed description of fast boundary element methods which are based on rigorous mathematical analysis. In particular, a symmetric formulation of boundary integral equations is used, Galerkin discretisation is discussed, and the necessary related stability and error estimates are derived. For the practical use of boundary integral methods, efficient algorithms together with their implementation are needed. The authors therefore describe the Adaptive Cross Approximation Algorithm, starting from the basic ideas and proceeding to their practical realization. Numerous examples representing standard problems are given which underline both theoretical results and the practical relevance of boundary element methods in typical computations.

The most prominent example is the potential equation (Laplace equation), which is used to model physical phenomena in electromagnetism, gravitation theory, and in perfect fluids. A further application leading to the Laplace equation is the model of steady state heat flow. One of the most popular applications of the BEM is the system of linear elastostatics, which can be considered in both bounded and unbounded domains. A simple model for a fluid flow, the Stokes system, can also be solved by the use of the BEM. The most important examples for the Helmholtz equation are the acoustic scattering and the sound radiation.

GENRE
Science & Nature
RELEASED
2007
April 17
LANGUAGE
EN
English
LENGTH
296
Pages
PUBLISHER
Springer US
SELLER
Springer Nature B.V.
SIZE
9
MB
Numerical Approximation Methods for Elliptic Boundary Value Problems Numerical Approximation Methods for Elliptic Boundary Value Problems
2007
Boundary Element Methods Boundary Element Methods
2010
Proceedings of the Conference on Applied Mathematics and Scientific Computing Proceedings of the Conference on Applied Mathematics and Scientific Computing
2005
Numerical Models for Differential Problems Numerical Models for Differential Problems
2014
Integral Methods in Science and Engineering Integral Methods in Science and Engineering
2006
Integral Methods in Science and Engineering, Volume 1 Integral Methods in Science and Engineering, Volume 1
2017
Multi-scale Simulation of Composite Materials Multi-scale Simulation of Composite Materials
2019
Stochastic Numerics for the Boltzmann Equation Stochastic Numerics for the Boltzmann Equation
2006
Treatise on Classical Elasticity Treatise on Classical Elasticity
2014
Algebraic and Differential Methods for Nonlinear Control Theory Algebraic and Differential Methods for Nonlinear Control Theory
2019
Design Sensitivity Analysis and Optimization of Electromagnetic Systems Design Sensitivity Analysis and Optimization of Electromagnetic Systems
2018
Dynamics of Bodies with Time-Variable Mass Dynamics of Bodies with Time-Variable Mass
2015
Pole Solutions for Flame Front Propagation Pole Solutions for Flame Front Propagation
2015
Theory of Stochastic Differential Equations with Jumps and Applications Theory of Stochastic Differential Equations with Jumps and Applications
2006