Two-dimensional Crossing-Variable Cubic Nonlinear Systems Two-dimensional Crossing-Variable Cubic Nonlinear Systems

Two-dimensional Crossing-Variable Cubic Nonlinear Systems

    • 129,99 US$
    • 129,99 US$

Lời Giới Thiệu Của Nhà Xuất Bản

This book is the fourth of 15 related monographs presents systematically a theory of crossing-cubic nonlinear systems. In this treatment, at least one vector field is crossing-cubic, and the other vector field can be constant, crossing-linear, crossing-quadratic, and crossing-cubic. For constant vector fields, the dynamical systems possess 1-dimensional flows, such as parabola and inflection flows plus third-order parabola flows. For crossing-linear and crossing-cubic systems, the dynamical systems possess saddle and center equilibriums, parabola-saddles, third-order centers and saddles (i.e, (3rd UP+:UP+)-saddle and (3rdUP-:UP-)-saddle) and third-order centers (i.e., (3rd DP+:DP-)-center, (3rd DP-, DP+)-center) . For crossing-quadratic and crossing-cubic systems, in addition to the first and third-order saddles and centers plus parabola-saddles, there are (3:2)parabola-saddle and double-inflection saddles, and for the two crossing-cubic systems, (3:3)-saddles and centers exist. Finally, the homoclinic orbits with centers can be formed, and the corresponding homoclinic networks of centers and saddles exist.

Readers will learn new concepts, theory, phenomena, and analytic techniques, including

· Constant and crossing-cubic systems

· Crossing-linear and crossing-cubic systems

· Crossing-quadratic and crossing-cubic systems

· Crossing-cubic and crossing-cubic systems

· Appearing and switching bifurcations

· Third-order centers and saddles

· Parabola-saddles and inflection-saddles

· Homoclinic-orbit network with centers

· Appearing bifurcations


​Develops equilibrium singularity and bifurcations in 2-dimensional self-cubic systems;
Presents (1,3) and (3,3)-sink, source, and saddles; (1,2) and (3,2)-saddle-sink and saddle-source; (2,2)-double-saddles;
Develops homoclinic networks of source, sink and saddles.

THỂ LOẠI
Khoa Học & Tự Nhiên
ĐÃ PHÁT HÀNH
2025
11 tháng 2
NGÔN NGỮ
EN
Tiếng Anh
ĐỘ DÀI
396
Trang
NHÀ XUẤT BẢN
Springer Nature Switzerland
NGƯỜI BÁN
Springer Nature B.V.
KÍCH THƯỚC
41,6
Mb
Two-Dimensional Constant and Product Polynomial Systems Two-Dimensional Constant and Product Polynomial Systems
2025
Analytical Dynamics of Nonlinear Rotors Analytical Dynamics of Nonlinear Rotors
2025
Limit Cycles and Homoclinic Networks in Two-Dimensional Polynomial Systems Limit Cycles and Homoclinic Networks in Two-Dimensional Polynomial Systems
2025
Two-dimensional Crossing and Product Cubic Systems, Vol. II Two-dimensional Crossing and Product Cubic Systems, Vol. II
2025
1-dimensional Flow Arrays and Bifurcations in Planar Polynomial Systems 1-dimensional Flow Arrays and Bifurcations in Planar Polynomial Systems
2024
Two-dimensional Self-independent Variable Cubic Nonlinear Systems Two-dimensional Self-independent Variable Cubic Nonlinear Systems
2024