Unsupervised Feature Extraction Applied to Bioinformatics Unsupervised Feature Extraction Applied to Bioinformatics
Unsupervised and Semi-Supervised Learning

Unsupervised Feature Extraction Applied to Bioinformatics

A PCA Based and TD Based Approach

    • ‏139٫99 US$
    • ‏139٫99 US$

وصف الناشر

This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. 
Allows readers to analyzedata sets with small samples and many features;Provides a fast algorithm, based upon linear algebra, to analyze big data;Includes several applications to multi-view data analyses, with a focus on bioinformatics.

النوع
تخصصات مهنية وتقنية
تاريخ النشر
٢٠١٩
٢٣ أغسطس
اللغة
EN
الإنجليزية
عدد الصفحات
٣٣٩
الناشر
Springer International Publishing
البائع
Springer Nature B.V.
الحجم
٢٩٫٧
‫م.ب.‬
Unsupervised Feature Extraction Applied to Bioinformatics Unsupervised Feature Extraction Applied to Bioinformatics
٢٠٢٤
Handbook of Machine Learning Applications for Genomics Handbook of Machine Learning Applications for Genomics
٢٠٢٢
Super-Resolution for Remote Sensing Super-Resolution for Remote Sensing
٢٠٢٤
Unsupervised Feature Extraction Applied to Bioinformatics Unsupervised Feature Extraction Applied to Bioinformatics
٢٠٢٤
Advances in Computational Logistics and Supply Chain Analytics Advances in Computational Logistics and Supply Chain Analytics
٢٠٢٤
Feature and Dimensionality Reduction for Clustering with Deep Learning Feature and Dimensionality Reduction for Clustering with Deep Learning
٢٠٢٣
Machine Learning and Data Analytics for Solving Business Problems Machine Learning and Data Analytics for Solving Business Problems
٢٠٢٢
Hidden Markov Models and Applications Hidden Markov Models and Applications
٢٠٢٢