Vital Question: Energy, Evolution, and the Origins of Complex Life
-
- $13.99
Publisher Description
“One of the deepest, most illuminating books about the history of life to have been published in recent years.” —The Economist
The Earth teems with life: in its oceans, forests, skies and cities. Yet there’s a black hole at the heart of biology. We do not know why complex life is the way it is, or, for that matter, how life first began. In The Vital Question, award-winning author and biochemist Nick Lane radically reframes evolutionary history, putting forward a solution to conundrums that have puzzled generations of scientists.
For two and a half billion years, from the very origins of life, single-celled organisms such as bacteria evolved without changing their basic form. Then, on just one occasion in four billion years, they made the jump to complexity. All complex life, from mushrooms to man, shares puzzling features, such as sex, which are unknown in bacteria. How and why did this radical transformation happen?
The answer, Lane argues, lies in energy: all life on Earth lives off a voltage with the strength of a lightning bolt. Building on the pillars of evolutionary theory, Lane’s hypothesis draws on cutting-edge research into the link between energy and cell biology, in order to deliver a compelling account of evolution from the very origins of life to the emergence of multicellular organisms, while offering deep insights into our own lives and deaths.
Both rigorous and enchanting, The Vital Question provides a solution to life’s vital question: why are we as we are, and indeed, why are we here at all?
PUBLISHERS WEEKLY
English biochemist Lane, whose previous book, Life Ascending, won the 2010 Royal Society Prize for Science Books, combines elegant prose and an enthusiasm for big questions as he attempts to peer into a "black hole at the heart of biology." Scientists "have no idea why cells work the way they do," nor "how the parts evolved," though as Lane points out, eukaryotic cells the building blocks of all multicellular life share multiple complex structural and functional features. With impeccable logic and current research data, he makes a case for a common ancestor of all multicellular life one created by a singular endosymbiotic event between a bacterial cell and an archaon cell that became the cell-powering mitochondrion. Lane walks readers through the details of how bacteria alone could have become metabolically diverse but not structurally complex. He then shows how the addition of mitochondria to the equation allowed a shift in energy flow through the cell, and how the migration of DNA introns from mitochondria DNA to the cell nucleus provided a wealth of new genetic material on which evolution could operate. The science is both a puzzle and a dance; Lane retains a sense of wonder as he embraces a bold hypothesis and delights in the hard data that gives it weight.